PAGE
3

Super Multiplayer Online Card Game

being a dissertation submitted in partial fulfilment of

The requirements for the Degree of Master of Science

in the University of Hull

by

Damian Connolly

BSc Multimedia

Dublin City University, Dublin, Ireland

September 2007

Table of Contents

4List of Figures

6Introduction

61.1
Aim

61.2
Motivation

71.3
Dissertation Structure

71.4
Project Specification

81.5
Ethical & Legal Issues

9Background

92.1
About SMOCG

92.2
Game Basics

102.3
Competition

12Pre-Production

123.1
Risk Assessment

123.2
Language & Environment

133.3
Art & Sound Assets

133.4
Network

143.5
Diagrams

19Implementation

194.1
State System

204.2
GUI

204.2.1
GUIItem

214.2.2
GUIButton

214.2.3
GUITextInput

224.3
Text & Fonts

234.4
Player

244.5
Collision Detection & Picking

254.6
Network

264.6.1
NetManager

284.6.2
NetConnection

294.7
Game Logic

304.8
Testing

314.9
Polishing

33Critical Appraisal

335.1
Achievements

345.2
Failures

345.3
Lessons Learned

36Project Expansion

366.1
Full Customization

366.2
Full Network Backend

376.3
Voice-chatting

376.4
Parental Control

38Bibliography

42Documentation

428.1
Contents of the CD

428.2
How to Install SMOCG

428.3
How to Play

448.4
Rules

458.5
Controls

458.6
Credits & Acknowledgements

List of Figures

2.1
Screenshot of Russell’s online Java version

11

3.1
Revised Gantt chart

15

3.2
Use case diagram for SMOCG

16

3.3
Sequence diagram for SMOCG

17

3.4
UML class diagram used in SMOCG

18

4.1
An example of the font image that would be loaded in

22

4.2
An example of the picking mechanism

25

8.1
The view presented in the game

43

Abstract

The aim of the project was to create, from scratch, a 3D first-person card game using the Microsoft XNA framework [xxiv], where users could play against each other online and have their statistics recorded. The focus was to create a playable game with an emphasis on a polished finished product.

The project ended with the game in an unfinished, yet playable state, due to problems such as scope and time management, areas that have been identified for improvement.

 Chapter 1
Introduction

1.1 Aim

The aim of the project was to create, from scratch, a 3D online first person card game using the Microsoft XNA framework and C#. The project and game is based on a popular card game and will be presented under the name Super Multiplayer Online Card Game (referred to as SMOCG hereafter). The user would be able to create and join games with ease, and all statistics and records would be recorded in an online database for easy viewing.

1.2 Motivation

There were a number of motivations for this project, all of which fall under the mantle of personal development. The primary motivation was to learn both C# and XNA, with some additional basic experience of using 3D Studio Max [vii], skills which add to and enhance a CV.

The secondary motivation was to create an eye-catching and outstanding portfolio piece, as well as gain experience in ‘polishing’ games off. Too often, due to time constraints, projects are left after the programming concerns are finished with, leaving functional but visually bland and unappealing demos. With the added task of finishing a game to the extent that it can be released to the public, involving the creation of onscreen Graphical User Interfaces (GUI’s), superior artwork to that used in the development process, and ‘fool-proofing’ the product to the extent that it stands up to anything that the user does, involves extra effort, but also gives important experience and helps in forward planning for future projects.

The final motivation was to create a game that will help people that live in different geographical locations to quickly get together to play and chat. The game itself was chosen because it is a personal favourite.

1.3
Dissertation Structure

The dissertation will begin with some background information on SMOCG, including its origins and previous computerised versions of the game. A pre-production section will follow that, outlining planning and considerations that were undertaken to build such a game from scratch. How the various modules in the game were created will follow, as well as running through implementation, testing and polishing. A critical appraisal of the final product will be presented, outlined what was achieved and what was not, along with lessons learned during the course of the project. A section detailing ideas for expanding and improving the product will ensue, and the dissertation will conclude with an extensive bibliography as well as documentation detailing the contents of the accompanying CD, how to install the program, how to play SMOCG, the game rules and controls, and finally the game credits.

1.4 Project Specification

Following the submission of the project Initial Report, a re-evaluation and risk assessment of the initial project goals showed that the project was very potentially over scoped. Factoring in time needed to learn the C# language, the XNA framework and IDE (Integrated Development Environment), gain familiarity with the 3D Studio Max program, and write the project dissertation, it left just over nine weeks for development and polishing; a large problem, especially considering the proposed networking backend. Scaling back and removing some of the features proposed, such as voice-chatting, parental controls, and customisable rules etc., to leave the game with a bare minimum would help ensure that those features that were left in would receive proper attention. It was felt that properly implementing a few features rather that hastily implementing a lot of features would stand better to the spirit of the project: to release a polished game. Any extra time at the end of the project could be spent implementing the removed features.

The revised project specification was to create a fully 3D, visually appealing and immersive environment. The user would be able to move through a number of game states using the in-game GUI, as well as keyboard and mouse interaction. The user would either setup a new game, or join an existing one by entering the relevant IP address of the computer running the game. The game itself would allow for drop-in play, and would cater for players dropping out due to exiting the game, or their connection dropping. If the creator of the game dropped out, then control would be passed to another player, allowing it to continue. Users would be represented by in-game customisable models and would be able to interact with each other using text chatting functionality. Statistics on the games and players would be held online and could be viewed in the game.

In order to create a polished and easy-to-use experience a lot of emphasis and time was placed on creating user interfaces and in-game graphics.

1.5 Ethical & Legal Issues

As with any game that will be released to the public where users can contact each other, the system is open to abuse, and care will need to be taken to address this issue. Other players should be able to take the option of kicking the abusive player in question, or at the very least have communications disabled or censored.

In terms of legal issues, none of the previous computerised versions of the game are commercial, and the card game that the project is based on isn’t the intellectual property of anyone. All the art assets for the project were created using Adobe Flash [iii], Adobe Photoshop [iv], and Autodesk 3d Studio Max [vi]. All code used in SMOCG was created for the project, with appropriate references where the work of others was used.

Chapter 2

Background

2.1 About SMOCG
SMOCG is based on a popular international card game known as, or similar to, Shithead, Shed, Idiot, Go! Go! Go!, Palace, Karma, and Paskahousu [xix] [xl]. David Parlett first documented the game in 1994 (as Shed) [xl], although it has been played in many countries before this. It is very popular among travelers and students in their teens and early twenties, and this is the demographic that the final product is aimed at.

2.2 Game Basics

SMOCG is played between two and five people, and there are a number of variations, yet the basic gameplay runs as such: at the start of the game, each player is dealt three cards face down in front of them, which they cannot look at. They then get three cards face up on top of those, and finally three cards that make up their playing hand. Before the game starts, the player can swap any of the three cards in their hand with any of the face-up cards in front of them, in order to make a strong set for later in the game. Any remaining cards are placed in the middle of the table, and become the pack.

The aim of SMOCG is to not be the last person to get rid of their cards. The dealer (usually the last person to lose) starts play, placing a card in the centre of the table, creating a pick-up pile, and play continues clockwise. In its simplest form, the current player has to place a card (or two or more of the same denomination) of equal or higher denomination (suits are ignored) than the previous card played. They then pick up from the deck so they have at least three cards in their hand (unless the deck is empty, or they already have three or more cards still in their hand). If the player cannot play a legal card, then they must pick up all of the cards in the pick-up pile. It is also possible for a player to pick up the pick-up pile even when they can play a legal card, for strategy reasons.

When the players have no more cards in their hands, and the deck is empty, then they can play the three face-up cards in front of them, and subsequently, the three face-down cards, though these cards are played blind.

There are a number of trick cards used depending on the variation of the game played, but the basic three are: the burn card, which takes the pick-up pile out of play permanently; the mirror card, which is transparent, meaning that the next player has to beat the card under the mirror card; and the restart card, usually represented by a two, which resets the count, meaning that the next player can play any card, even the lowest. An additional card is used in SMOCG, the lower than card, represented by a seven, which means that the next person’s card has to be lower than seven. Trick cards can be played on any card can alter the course of play significantly.

2.3 Competition

There have been a number of digital conversions of the game. Among the most popular are: an online Java version [xxxv], an offline Java multiplayer version [x], and an offline C++ single player version [xlii]. Each of the games makes use of a top down perspective [see Figure 2.1], similar to Solitaire or Hearts. With SMOCG, a more appealing and immersive visual style is chosen that will make it stand out.

One feature that stands out in Russell’s implementation [xxxv] is the ability for the user to change the rules to suit the style of play that they are used to. With the rule set potentially changing depending on the geographical location, this is a very good addition to ensure that the program gains a wider user base, and is one of the additional features planned for SMOCG.

None of the competitor’s games implement multiplayer, with the exception of Cavenagh’s program [x], and none record statistics or tracking. By including this feature SMOCG would stand out as a more enjoyable game and encourage the setup of communities and groups of friends that regularly play together. With the tracking of losses and player rank, a more competitive element would be added to the game. The user is no longer just playing against the other four people, but is ranked globally, and attains status akin to their standing. This is similar in a basic way to the implementation of the Xbox LIVE Achievements and GamerPoints [xxiii].

[image: image1.jpg]

Figure 2.1: Screenshot of Russell’s online Java version, showing top down perspective

Chapter 3

Pre-Production

3.1 Risk Assessment

With the scope of the project reduced to compensate for the time available for development, further risk assessment was performed to identify the areas of development most likely to result in time lost and delay the schedule. The main problem with the project was the lack of experience in working with the C# language and XNA framework. It was hard to lay out definitive time plans for parts of the projects, as the development time for each of the modules was at best an estimation and could vary largely with the actual time taken. As such, a revised Gantt chart [see Figure 3.1] was developed, and time set aside to constantly review it on a regular basis, throughout the project cycle. Risks and problems could be identified early on and steps could be taken to minimize time lost and the impact of such to the project.

3.2 Language & Environment

With a major focus of the project on Network functionality, the C# language was chosen over C++, due to the greater ease in implementing socket programming in C#. The choice was finalized due to one of the motivations of the project; learning Microsoft XNA. The XNA Game Studio

…enables hobbyists, academics, and small, independent game developers to easily create video games for Windows and the Xbox 360 console using optimized cross-platform gaming libraries based on .NET [xxviii].

Using XNA would not only gain valuable experience and allow for speedier development, but would also allow for a potential port of the game to the Xbox 360.

XNA, at the time of writing, is currently only available using the Microsoft Visual C# 2005 Express Edition, a free-to-download IDE for use with the C# language. A separate download, the XNA Game Studio Express 1.0 Refresh [xxviii], installs the needed components and libraries to allow the developer to start making games.

The XNA framework itself contains libraries to allow for the easy inclusion of assets such as 3D models, sound, and image files. It also contains commonly used or helpful classes, such as the Vector3, Matrix, and BoundingBox classes.

3.3 Art & Sound Assets

All of the art assets, including the 3D models, were created specifically for the project. Each element was created to a high quality as, with one of the project emphases being to create a polished, visually appealing product, “programmer art”
 was to be avoided at all costs.

For the sound that was to feature in SMOCG, a sound engineer in Ireland was enlisted [xx]. Audio cues, and areas where background music was desirable, were sent by email, with the resulting sounds being sent back via CD. Several rounds of revisions followed until the finalized sounds were achieved for the project.

3.4 Network

A part of the initial design for SMOCG was that players would be able to drop in and drop out of a game without negatively affecting play. With this in mind, a client-server model of networking was out of the question, as if the player running the server were to lose their connection, the entire game would drop. A hybrid client-server / peer-to-peer architecture was chosen [xxxi]. The client that started the game would be tagged as the “server”, and would be responsible for introducing new players to the game, as well as giving other clients their new player numbers when a connection dropped. A full peer-to-peer system was deemed unnecessary for the scope of the project, so a cut-down version was designed. Each client would be connected to every other client, and each would keep a full version of the game state locally. When a client played a card, or otherwise performed an action that the other clients would need to know about, they would send that action to everyone. In the case of playing a card, each client would then test that command for validity before acting on it.

To deal with the case of the client who is acting as the “server” losing his connection, each client, upon joining the game, forms a list of all the players there before him. Upon detecting a disconnection from the “server”, each client checks the list of clients older than them, and if they are deemed the oldest, then they take over the role of the “server” and inform all the other clients of the event. In practice this worked surprisingly well. The game can continue to survive as long as there is one client present, and the players that finish a session can be very different to the clients that started the session.

3.5 Diagrams

The first diagram outlines the revised Gantt chart developed at the start of the project after the scope was reduced. The time for each module was marked in provisionally, and revised milestones were set.

Figure 3.1: Revised Gantt chart

The use case diagram for the program is shown as Figure 3.2, and shows the usage requirements for the program and the options available to the player.

[image: image2.png]

Figure 3.2: Use case diagram for SMOCG

The sequence diagram following [Figure 3.3] shows the order of commands and communication between clients when a new client joins the game. Initially, the connecting client makes a connection request to the client acting as “server”. If there is room available, the “server” replies with a welcome message, the player number of the player that the client will be controlling, and a request to open a port number for connection. The connecting client receives the message, opens the required port and starts listening for a connection before sending a confirmation message back to the “server”. Upon receiving this, the “server” sends the new client’s IP address and port number to any other client in the game, which then connects to the new client and register their connections as coming from a specific player.

[image: image3.png]Ererp—
e :
i T
!
sk

Adeptayer)

AdePtayer)
WelcomePiayeint num. i tciaPlayers)
Operperiinin)
PorOpen

Openport_and_Lisen()

GrolphndPort

> AddPlayer()

Connect
RegeerPioyer

Figure 3.3: Sequence diagram detailing the order of events that occur when a new client connects to the game

The following UML class diagram [Figure 3.4] shows the main classes in the program and the interaction between them.

[image: image4.jpg]o] [SWocGSnGs

iz o

Figure 3.4: UML class diagram used in SMOCG

Chapter 4

Implementation

4.1 State System

To enable easy switching between game states, such as Splash screen, Main Menu, and In-game Play, a state system was developed. An enum GameState was created to hold all the game states available. Each section of the game implemented a class that derived from Scene, a base class that contains functions such as Init(), Update(), and Render(). The Update() method returns either GameState.None if no change of state is necessary, or else the next state to transition to, such as GameState.SplashScreen. The main game object keeps a record of the current scene, and in its Update() method, checks the returned GameState enum to see if a change is necessary. If one is, then the current scene is shutdown and the new scene initiated.

Each Scene contains a list of GameObjects relevant to that scene, and can also contain a separate Scene object as an overlay, allowing the use of popup menus or dialog boxes.

abstract public class Scene {

// another scene that can be used as an overlay
protected Scene _overlay;

…
// a list of all the GameObjects in the scene

private List<GameObject> _sceneObjects;

// is the scene paused?

Private bool _isPaused;

// functions
public Scene(SMOCGGame game) {}
public virtual void Init() {}
public virtual GameState Update() {

 //update all the game objects

 …

 return (_overlay == null) ? GameState.None : _overlay.Update();
}
public virtual void Render() {}

}

4.2 GUI

The GUI system was of great importance to SMOCG, as it would represent part of a user’s first impressions of the game, as well as drive the experience. The GUI had to respond properly to the user’s interactions and be flexible enough to handle keyboard and mouse input in a range of ways, as well as allowing custom event handlers to be assigned to certain events, such as a mouse click on a button. Rather than implement an existing library, custom classes were built to handle all input.

4.2.1 GUIItem

The GUIItem base class implements the basic interaction common to all the GUI elements. It also defines the GUIEvent struct, which gets updated and returned on every call to Update(). The GUIEvent keeps track of the type of event, the type of GUI widget that triggered the event, and the GUI widget itself. The GUIItem class keeps track of whether the GUI widget is enabled, focused, or visible, as well as the number of states available to the widget. This is relevant when the widget is rendered, as different parts of its texture can be rendered depending on its current state. Every Update(), the GUIItem keeps track of where the current mouse state and determines it’s current state accordingly. Callback methods, such as OnMouseOver(), or OnMouseDown() can be implemented either by overriding the virtual method, or making use of a delegate handler.

public abstract class GUIItem {

 /// the guiEvent

 public struct GUIEvent {

 public GUIItem _creator; // the creator of the event

 public GUI_widgit_type _widgitType; // the type of widgit that created the event

 public GUI_event_type _eventType; // the event type

 }

 /// Constructor that sets up the gui item properly

 public GUIItem(SMOCGGame game,

 string name,

 Vector2 position,

 GUI_widgit_type widgitType,

 int width,

 int height,

 string textureName,

 int numStates) {}

 // Process the input of the mouse.

 public virtual GUIEvent ProcessInput(MouseState mState, TimeSpan deltaTime) {}

 // Mouse is over the GUI item. base class does nothing

 public virtual void OnMouseOver() { }

 // Mouse was over the GUI item and no longer is. base class does nothing

 public virtual void OnMouseOut() { }

 // mouse is over the GUI item and is clicked. base class does nothing

 public virtual void OnMouseDown() { }

 // mouse was clicked on the GUI item and subsequently released. base class does nothing

 public virtual void OnMouseUp() {}

 // Render the GUI item. base class does nothing

 public virtual void Render() { }

}

4.2.2 GUIButton

The GUIButton class inherits the GUIItem class and overrides the Render() function so it can display different textures depending on it’s state. It’s relatively trivial to assign callback functions based on its state, using the delegate handler system.

4.2.3 GUITextInput

The GUITextInput class inherits the GUIItem class and extends it by adding support for keyboard interaction. When the user clicks on the GUITextInput, it activates and begins polling the keyboard state with the help of the InputHelper class, which adds a layer of abstraction, making it easier to determine which key has been pressed. The InputHelper class keeps a record of the current key states, as well as the previous key states, necessary to stop repeated key strokes being detected every update.

Using InputHelper, special cases, such as shift, backspace, and delete are easy to detect and incorporate into the text input widget.

The GUITextInput class also allows the user to click within the typing area itself to move the cursor to that position, as well as controlling the cursor position using the arrow keys.

4.3 Text & Fonts

Fonts and text in SMOCG are achieved by loading in a font map of characters and drawing different parts of the texture depending on the character to be drawn. The static Font class utilises a FontInfo struct to keep information about each font, such as the characters in the font, their width, height, spacing, and render spacing. The texture for the particular fonts [see Figure 4.1 for an example] is loaded in and a SpriteBatch is created. The SpriteBatch class is part of the XNA framework and allows a group of sprites to be drawn using the same settings. When a string is passed into the Font class to be drawn to the screen, each character of the string is separated and its position is found in the relevant texture. One of SpriteBatch’s Draw() methods allow for a Rectangle to be passed in, so only the part of the texture that falls within that rectangle will be drawn.

This method of drawing text allows any valid sequence of characters to be drawn to the screen at will, rather than specific images that would have to be redone if the text contained in the image changed.

[image: image5.jpg]

Figure 4.1: An example of the font image that would be loaded in

public static class Font {

 // The FontInfo struct to help with the organisation of font information

 private struct FontInfo {

 public string Filename; // the name of the texture to load in

 public string Characters; // what characters are in the texture

 public int CharSpacing; // how much space is between each char

 public int RenderSpacing; // how much space to put between each char when rendering

 public int CharHeight; // the character's height

 public int CharWidth; // the character's width

 public int TextureNum; // what number of texture to use

 }

 // setup all the font's used in the game

 private static FontInfo[] _fontInfo = new FontInfo[]{};

 // create the sprite batch used to draw the fonts, and load in the textures

 public static void Init(SMOCGGame game) {}

 // Dispose of the Font's SpriteBatch

 public static void Dispose() {}

 // Setup the Font to begin drawing

 public static void Begin() {}

 // Make the call to finish drawing

 public static void End() {}

 // Draws a string using a particular font style

 public static void Draw(FontStyle fontStyle, int x, int y, string text, Color color) {}

 // Gets a rough width of the text in a specific font style

 public static int GetWidth(FontStyle fontStyle, string text) {}

}

4.4 Player

Most of the interaction between the user and the program takes place through the Player class. The Player object represents the user and is, in turn, represented in the game world via the PlayerShape class. The user can customise attributes of their player, such as skin colour, hair models, hair colour, and name, similar to how the Mii functionality works on the Nintendo Wii [xxxii]. These customisations can also be saved to disk.

The user looks around the game world and interacts with objects using the mouse. When a game is entered, a NetConnection object is registered with the player, which allows the player to easily send commands over the network. Most of the game logic, such as receiving and placing cards, as well as checking opponents moves for validity also goes through the Player class, although in hindsight, a lot of this functionality could have been extracted to a better location and would leave the Player class easier to manager.

4.5 Collision Detection & Picking

One of the benefits of the XNA Content pipeline is that as models are being imported and parsed, their bounds are calculated and a BoundingSphere object, easily convertible to a BoundingBox object, is added to the mesh. Early versions of SMOCG implemented this functionality, although problems soon arose when the number of cards in the player’s hand grew. BoundingSpheres of cards to the front would overlap those of the cards behind, making it frustrating and often impossible to select cards.

XNA also lets you create a custom content processor, a solution used in SMOCG and gained with the help of an online tutorial [xxvi]. The custom content processor would go through any model tagged to export using it, and store all the vertices in a list, adding tags to the model geometry to allow access to the list through code.

In the Update() code in the game, a Ray would be created by un-projecting the mouse x and y coordinates. Running through each model to be tested, the ray would then be multiplied by the inverse of the model’s world, or model transform, matrix, to put the ray from world space to object space. If the ray intersected with the model’s BoundingSphere, it would then loop through all the triangles in the model, and using an algorithm developed by Moller and Trumbore [xxvi], see if any collision occurs, and if so, keep a record of the closest collision.

This allowed for picking objects with triangle-accuracy, and allowed the player to have as many cards in his hand as he wanted without adversely affecting gameplay.

[image: image6.jpg]

Figure 4.2: An example of the picking mechanism, with the chosen triangle outlined

4.6 Network

Creating the network for SMOCG was one of the biggest challenges. One of the original aims for the project was to create an easy-to-use, foolproof, product. Players should be able to setup and join games with ease, and keep a record of their progress online. The networking functions were split between two classes, the NetManager class, and the NetConnection class. The IP of the client is obtained by using the Dns class provided in the System.Net namespace. This returns an IPHostEntry object, and its address list can be parsed to find the proper IP.

IPHostEntry ip = Dns.GetHostEntry(Dns.GetHostName());

string finalIP;

foreach (IPAddress sip in ip.AddressList)

 if (sip.ToString().Length > 7) {

 finalIP = sip.ToString();

 break;

 }

The current version of SMOCG only supports Local Area Network (LAN) game sessions, so this technique of finding the user’s IP wouldn’t work, and something more robust would need to be developed. The NetManager and NetConnection classes would also have to be redesigned to include gaming over a Wide Area Network (WAN). Greater fault protection would need to be implemented as the possibility of dropped packages and connections are greater over WAN.

4.6.1 NetManager

The NetManger class is responsible for setting up and closing down NetConnection objects. It also operates a socket for listening for and accepting incoming connections. The NetManager is responsible for all communication leaving the player’s client. If the client is acting as the game host, then that client’s NetManager deals with any dropped connections, first reordering the remaining players, then telling the other clients who dropped out, along with their new player number

public class NetManager {

 // a list of the connections managed and connections before the player (in case the gamestarter drops)

 private List<NetConnection> _connections = new List<NetConnection>(SMOCGGame.Settings.MaxPlayers);

 private List<NetConnection> _connectionsBeforeMe = new List<NetConnection>(SMOCGGame.Settings.MaxPlayers);

 /// Create the NetManager and setup the connection callback

 public NetManager(CardGameScene cgs) {}

 /// Listen for any incoming connections

 public void Listen() {}

 // Called when a connection is being established

 public void OnConnection(IAsyncResult iar) {}

 // Register the connection with the relevant player

 public void RegisterWithPlayer(NetConnection conn) {}

 // Add a blank connection for yourself, so we can call different

 // methods direct from the Player class

 public void AddBlankConnection() {}

 // Add a connection for a player that was there before you. e.g.

 // if you're player 2, then add the connections

 // for player 0 and player1

 public void AddConnectionBeforeMe(NetConnection conn) {}

 /// Removes a connection for a player that was there before you

 public void RemoveConnectionBeforeMe(NetConnection conn) {}

 // Send data to a particular connection

 public void SendToConnection(int n, string data) {}

 // Send data to all the connections

 public void SendToAll(string data) {}

 // Send data to all the connections, bar the one specified

 public void SendToAllExcept(int n, string data) {}

 // Give the addresses that are currently being held out to the

 // connections (bar the one specified)

 public void GiveAddress(NetConnection conn, int portNum, int playerNum) {}

 // Send the shuffled position of the cards to all over the

 // network

 public void SendShufflePos(string sp) {}

 // Send that the player is ready to begin

 public void SendReadyToBegin() {}

 // Send that the player has put some cards on the pickup pile

 public void SendPutCardsInPickupPile(string pc) {}

 // Send that the player has ended his turn

 public void SendEndTurn() {}

 // Send that the player has just picked up

 public void SendPickup() {}

 // Tell all the players to reset the game

 public void SendReset() {}

 // Send that a player has left the game

 public void SendDeletePlayer(int deleted, int newPlayerNumber) {}

 // Remove a connection from the list of managed connections

 public void RemoveConnection(NetConnection conn) {}

 // Make sure all of the connections are active

 public void Update() {}

 // Assume the GameStater tag, so reset the listen port

 private void AssumeGameStarter() {}

 // Set up a NetConnection object, and try and connect to someone

 public void ConnectToAddress(string ip, int port, int connPlayer, bool createPlayer) {}

}

4.6.2 NetConnection

The NetConnection class controls the socket connection between two clients. Each connection is registered to the player it’s coming from, so clients know which player to call when commands come from a specific NetConnection. The NetConnection listens for data asynchronously so the client doesn’t have to continuously poll for data. The first four bytes of every message contain the length of the command to follow, so nothing happens until the full message has been received. When all bytes are received, the message is parsed to see what command it contains. A network protocol was set up to easily distinguish different commands. The first two characters of the parsed message would contain the command, followed by one or more variables to use. For example, when the “server” client deals the cards, the shuffled position would need to be sent along the network so each client’s game world is kept up to date. The received message would take the form of “SP” followed by a list of the new positions for the cards in the deck. Taking advice from Pritchard [xxxiv], each command is checked for validity before being processed to help cut down on clients cheating.
 public class NetConnection {

 // Create a new NetConnection object, and set up the

 // onDataReceived callback

 public NetConnection(NetManager nm, int n) {}

 // Connect the socket of the NetConnection to a specific ip

 public bool Connect(string ip, int port) {}

 // Close the NetConnection and allow reuse of the socket

 public void Close() {}

 // Wait for data

 public void WaitForData() {}

 // Called when some data has been received

 private void OnDataReceived(IAsyncResult iar) {}

 // Parse the stringbuilder object to get the messages out

 private void ParseData() {}

 // Parse the commands contained in the last message

 private void ParseCommands(char [] charMsg) {}

 // Send data down the socket

 public void Send(string sendData) {}

 // Send the message that the port is open so people can connect

 // to us

 public void SendPortOpenCall() {}

 // Send a message stating that the player has swapped two of his

 // cards

 public void SendSwapCards(string sc) {}

 // Append the length of the message to the message itself, so

 // when data is received, it can be parsed correctly.

 // it also appends the player controlled onto the end of every

 // message, so the client receiving it knows who it's from

 private string AppendMessage(string data) {}

}

4.7 Game Logic

The game logic was incorporated mainly in the Player class, with the help of the static class PlayHelper. Upon a player’s turn, an initial check is performed to see if the player has any valid cards in his hand that he can play. If none are found then an automatic pickup occurs. Otherwise, the player is free to choose any of his cards and try to play them, although the PlayHelper class will only acknowledge valid cards. The PlayHelper also comes into use in determining which card the player can focus on and which card they can select. Players are allowed to focus on their opponent’s face-up cards to see what they are, but aren’t allowed to select them. Similarly, before the game starts, the player can select any of his face-up cards to swap with his hand cards, but once the game begins, he can no longer select them. This is made easier with the help of a number of enums, primarily the PlayerInGameState enum, which helps keep track of which cards the player can play from, and the CardValue and CardType enum, which allows the selecting and playing of valid cards.

public enum PlayerInGameState {

 None, // No state - the game hasn't started yet

 PreGame, // in the pre game state - the player can swap his hands

 // cards with his face up cards

 HandCards, // The player is playing from, and only from his hand

 // cards

 FaceUpCards, // The player is playing from his face up cards

 FaceDownCards, // The player is playing from his face down cards

 Out // The player is out of the game

}

// the card value running from smallest to biggest

public enum CardValue {

 Two,

 Three,

 Four,

 Five,

 Six,

 Seven,

 Eight,

 Nine,

 Ten,

 Jack,

 Queen,

 King,

 Ace

}

public enum CardType {

 FaceDownCard, // One of the three cards face-down at the start of

 // the game

 FaceUpCard, // One of the three cards face-up at the start of the

 // game.

 InHandCard, // Any cards that are held in your hand.

 InPickupPileCard, // Any of the cards in the center of the table,

 // which can be picked up, or discarded

 InDeckCard, // Any of the cards currently left in the deck, which

 // players have to pick from when they place a card

 InDisposedPileCard // Any of the cards that have been taken out

 // of the game

}

There were a number of problems in implementing the game logic, as a number of different conditions can be met in numerous ways, particularly those such as the player-out functionality. Repeated unit tests to test each of these possibilities was tedious yet necessary, and ultimately provided invaluable when it came to testing the game logic again over the network.

4.8 Testing

Extensive testing was performed throughout the course of development, with unit tests for every component once it was initially developed, and again with each revision. A single-player offline, temporary version of SMOCG was developed to test the game logic, and when the network was introduced, the client issuing the command to test was used as the control for the group.

The network testing in particular was very extensive, as results could differ depending on the client’s position in the game, and what previously happened. For example, testing the reaction to a player dropping connection has different results depending on whether the client is player one, two, or three.

The testing proceeded quicker than originally expected, however. Working in a managed environment such as C# meant that there were no errors due to “dangling pointers”
 or memory leaks due to non-destruction of objects. Also, previous experience with networking made a large difference in avoiding problems dealt with before, as well as leading to easier debugging of newer problems.

Once the game logic and interface were completed, various testers were employed to test how the product ranked as a game. Numerous comments on difficulty in detecting which players turn it was, as well as what to do in a given situation led to better development of the in-game Heads Up Display (HUD), and better hints as to what to encourage the player towards. Having a personal interest in the game left it difficult to step back and see it through the eyes of someone unfamiliar with the game, so this testing was invaluable in helping develop SMOCG to reach a wider audience.

4.9 Polishing

One of the motivations of the project was to gain experience in polishing a game to a high standard in terms of artwork, user interaction and experience, and gameplay. This part of the project ran longer than expected, and the workload involved was underestimated when planning the project. Every action that the player could take in the game meant that a corresponding GUI element had to be made or programmed. Outlining what the GUI element’s actions do, and what the player should do next, meant displaying hints on the in-game HUD, or developing obvious graphical cues, such as icons.

The game code also had to be stable enough to cope with whatever the player decided to do, as what the player might do might not be what is desired. With this in mind, this lead to extra development time, particularly with open-ended elements, such as the text input GUI element.

Also, the overall game style needed to be coherent, so a number of style rules were created to make it easier to develop graphical elements. This involved GUI elements being the same from one screen to the next, a font and colour scheme being chosen, as well as rules concerning GUI placement and spacing.

Overall, bringing the project from development stage to polished stage involved almost as much time and energy as originally developing it, yet it was worth the effort. Small touches, such as the blinking cursor in the text input GUI element might not be noticed when they’re put in, but they will be noticed if they’re left out, and all together it gives the project a more coherent feel.

Chapter 5

Critical Appraisal

5.1 Achievements

There are a number of achievements in this project, among which is experience gained in working with C# and XNA. The C# language is very easy to program with, and lends itself to quick development. Though many of the more powerful features of the language, particularly delegates and asynchronous callback functions, were relatively unused in the project, this was mainly due to the time limit on the project. Many areas of the project could be redeveloped with these in mind but this is to be expected when developing a project in a new language.

The XNA framework is very simple to use, with some very useful classes that ease development considerably. The community around XNA is both supportive and full of useful tutorials for programmers starting out using the software. Again, many of XNA’s more powerful features weren’t properly utilized, but again, this will improve with more experience. Lessons learned in developing SMOCG can be utilized in extending the project, or in future projects.

There is somewhat of an achievement with SMOCG itself. While the core engine and game is in place, many of the original features couldn’t be implemented due to time restrictions. However, the features enabled provide a simple, easy-to-use experience, that once expanded could allow the game to stand out, not only among the other competition mentioned in this dissertation, but other community-created XNA games.

A lot of experience was received in the area of the polishing of a game. Many of the small touches separately don’t affect the experience much, but together, they take a good game and make it into a great game. Creating this kind of experience doesn’t necessarily mean high production values and large amounts of time spent developing flashy exteriors, but rather keeping the end-user in mind during development and creating an easy, coherent, and pleasing experience.

5.2 Failures

Of all the failures that affected the project the most, inefficient project management and time-keeping lead to a number of problems. While identifying development milestones can be difficult when the best estimation at the time taken for module-development can be widely off, when milestones did slip, not enough of an effort was made to get the project back on track. As a result some of the features to be implemented, such as online score tracking, failed to make it into the game. This has been identified as the single-most important area of improvement for future projects.

Better code planning would also help in future projects. This would allow for proper segregation of code and better grouping of common areas to increase readability and reuse. This became increasingly evident during the later stages of the project, when time constraints meant that some code was left in its original testing positions rather than being extracted to a more meaningful position.

Another problem that occurred during development came when creating models for the game, particular the player models. Too much time was taken up creating models when it would have been more prudent to delegate the task to an external artist. This is evident in the character customization module. Due to time constraints there is a severe lack of choice when choosing the players hair model for example. By giving this task to an external artist, it would give a better impression of a fully fleshed out module rather than coming across as a hastily implemented solution.

While SMOCG works across LAN connections, it was originally designed for use over the Internet. Again, this came down to time constraints, and is due to be addressed in a future release of the program.

5.3 Lessons Learned

It has been noted that better time-keeping and project management would have benefited the project better. Tighter schedules and milestones would have meant that the product would have been delivered feature-complete. As such, a number of features were lacking, and it reflects on the game as a whole.

In future projects, more time should be set aside for polishing the game and bringing it up to marketable standard. While SMOCG is certainly playable without it, once implemented, all the polishing features led to a much more satisfying experience. With more time to work on this, the results would be even better.

Another, personal, failure is taking on too much of the project at once. Often, during the project, the demands of programming a new feature would clash with polishing a feature already in place. With such a tight schedule, creating a proper game is more suited to a number of people with expertise in different areas. Even having something as simple as a dedicated modeler for the project can save a surprising amount of time.

A more positive learning experience was the knowledge gained in working with C# and XNA. Towards the end of the project, solutions for problems were usually better, cleaner, and faster, and including the more powerful features of the C# language had a positive effect on SMOCG. This experience can be carried over into extending the project and creating new projects. Similarly, later in the project lifecycle, when looking for solutions to problems, better implementations of features already present in the program were uncovered but couldn’t be changed due to time. While this is frustrating, these techniques can be incorporated into future projects.

Chapter 6

Project Expansion

6.1 Full Customization

While the player model in the game is customizable, this feature is under-developed and under-used. More models for use on the player, including accessories could be included with ease using the existing engine, would lead to a more enjoyable experience. Ideally, this feature would rank on par with the Mii creator functionality on the Nintendo Wii [xxxii].

One of the original features proposed with the initial report, and including in Russell’s online Java version [xxxv] is customizable rules. Being able to change which cards are counted as special and which rule-set to use would allow SMOCG to access a wider user base and make the program stand out amongst the competition.

6.2 Full Network Backend

One of the failures of the project was the failure to implement the score tracking features outlined. With this feature, a database is created online, which tracks and stores player statistics, which can then be displayed in-game beside the player. This would give a greater impression of playing against an actual person rather than a faceless name. It would also help with the development of a community and rivalry around the game. Players could seek out other players by name and challenge them to a match. The player’s statistics would be available on online leaderboards, and depending on rank could unlock unique items to customize their characters.

Having a full network backend would also mean that players would be able to search for games and be matched by a server, rather than having to manually enter the game creator’s IP. Statistics on games underway would make it easier for players to join games that aren’t full, or look in on games that are.

6.3 Voice-chatting

Following on from text-chatting, voice chatting would allow the players to actually speak to each other, creating a greater sense of immersion with the game, and giving the player a deeper enjoyment. Voice-chatting could be implemented via external libraries, such as TeamSpeak [xxxvi].

6.4 Parental Control

To help SMOCG reach out to a wider audience, a parental control feature could be implemented. With this enabled, players can only access other players with the feature, and they would have their own leaderboards and unique items. Voice-chatting, if present, would be disabled, and text-chatting would be censored for profanity. This would allow younger players to enjoy the competitive nature of the game without fear of being insulted or abused.

Chapter 7

Bibliography

[i] Abdelwahed O, 2003, Distributed Gaming [online]. Available: http://www.gamedev.net/reference/articles/article1948.asp [Accessed 04 August 2007]

[ii] Adams E, 2002, Balancing games with positive feedback [online]. Available: http://www.gamasutra.com/features/20020104/adams_01.htm [Accessed 28 June 2007]

[iii] Adobe, 2007, Adobe Flash CS3 Professional [online]. Available: http://www.adobe.com/products/flash/ [Accessed 03 July 2007]

[iv] Adobe, 2007, Adobe Photoshop CS3 editions [online]. Available: http://www.adobe.com/products/photoshop/index.html [Accessed 03 July 2007]

[v] Albahari B, Drayton P, Merrill B, 2002, C# Essentials, 2nd Edition, California: O’Reilly & Associates Inc.
[vi] Amir (xironix), 2006, TCP/IP Chat Application Using C# [online], Available:

http://www.codeproject.com/cs/internet/TCPIPChat.asp [Accessed 26 August 2007]

[vii] Autodesk, 2007, Autodesk 3ds Max [online]. Available: http://usa.autodesk.com/adsk/servlet/index?id=5659302&siteID=123112 [Accessed 03 July 2007]

[viii] Autodesk, 2007, 3ds Max 9 Tutorials [online]. Available: http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=9861688 [Accessed 12 July 2007]
[ix] Caminos R and Stellmach T, 2004, Cross Platform User Interface Development [online]. Available: http://www.gamasutra.com/gdc2004/features/20040326/caminos_01.shtml [Accessed 03 July 2007]

[x] Cavenagh S, 2004, Shithead Computer Game [online]. Available: http://home.pacific.net.au/~cavenagh/SH/ [Accessed 28 June 2007]

[xi] CodeGuru, 2007, Network & Systems [online]. Available: http://www.codeguru.com/csharp/csharp/cs_network/ [Accessed 05 August 2007]

[xii] CodeIdol, 2007, Thinking about C# Network Programming [online], Available: http://codeidol.com/csharp/csharp-network/ [Accessed 02 September 2007]
[xiii] Dhar A (Ashishdhar), 2003, Introduction – Socket Programming in C# - Part 2 [online]. Available: http://www.developerfusion.co.uk/show/3997/1/ [Accessed 10 August 2007]

[xiv] Flasko M, 2007, Microsoft Peer-to-Peer Networking : How to [online]. Available: http://blogs.msdn.com/p2p/rss_tag_HowTo.xml [Accessed 04 August 2007]

[xv] Galbraith T, Lewis S, Constance S, and Mabley P, 2003, Twisted Shithead [online]. Available: http://jaymes.net/cards.html [Accessed 28 June 2007]

[xvi] Hewitt N, 1998, Merde de Tete: Leeds Rules Shithead [online]. Available: http://www.shit-head.org.uk/ [Accessed 03 July 2007]

[xvii] Ince D, 2001, C#, Berkshire: McGraw-Hill Publishing Company

[xviii] Liberty J, 2005, Visual C# 2005: A Developer’s Notebook, California: O’Reilly Media Inc.

[xix] McLeod J, 1996, Rules of Card Games: Shithead [online]. Available: http://www.pagat.com/beating/shithead.html [Accessed 28 June 2007]

[xx] McKenna S, 2007, MySpace music website [online]. Available: http://www.myspace.com/smkenna [Accessed 03 July 2007]

[xxi] Microsoft, 2003, Introduction to Windows Peer-to-Peer Networking [online]. Available: http://www.microsoft.com/technet/network/p2p/p2pintro.mspx [Accessed 04 August 2007]

[xxii] Microsoft, 2007, Windows Peer-to-Peer Networking [online]. Available: http://technet.microsoft.com/en-us/network/bb545868.aspx [Accessed 04 August 2007]

[xxiii] Microsoft, 2007, Xbox.com | Xbox LIVE [online]. Available: http://www.xbox.com/en-US/live/ [Accessed 03 July 2007]

[xxiv] Microsoft, 2007, XNA Developer Center [online]. Available: http://msdn2.microsoft.com/en-us/xna/default.aspx [Accessed 20 June 2007]
[xxv] Microsoft, 2007, XNA Creators Club Online | Education – Picking Sample [online]. Available: http://creators.xna.com/Headlines/developmentaspx/archive/2007/01/01/Picking-Sample.aspx [Accessed 26 July 2007]

[xxvi] Microsoft, 2007, XNA Creators Club Online | Education – Picking with Triangle-Accuracy [online]. Available: http://creators.xna.com/Headlines/developmentaspx/archive/2007/01/01/Picking-with-Triangle_2D00_Accuracy.aspx [Accessed 26 July 2007]

[xxvii] Microsoft, 2007, XNA Creators Club Online | Education – Samples [online]. Available: http://creators.xna.com/Education/Samples.aspx [Accessed 26 July 2007]

[xxviii] Microsoft, 2007, XNA Game Studio Express [online]. Available: http://msdn2.microsoft.com/en-us/xna/aa937795.aspx [Accessed 04 July 2007]
[xxix] Microsoft P2P Team, 2007, Microsoft Peer-to-Peer Networking [online]. Available: http://blogs.msdn.com/p2p/default.aspx [Accessed 04 August 2007]

[xxx] MSDN Forums, 2007, .Net Framework Networking and Communication –MSDN Forums [online]. Available: http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=40&SiteID=1 [Accessed 05 August 2007]
[xxxi] Ng Y, 1997, Internet Game Design [online]. Available: http://www.gamasutra.com/features/19970801/ng.htm [Accessed 20 June 2007]

[xxxii] Nintendo, 2007, Wii.com – Mii Channel [online]. Available: http://uk.wii.com/movies/miichannel/ [Accessed 03 July 2007]

[xxxiii] Phantom EFX Inc., 2006, Computer Casino Games [online]. Available: http://www.phantomefx.com/poker.asp [Accessed 28 June 2007]

[xxxiv] Pritchard M, 2007, How to Hurt the Hackers: The Scoop on Internet Cheating and How You Can Combat It [online]. Available: http://www.gamasutra.com/features/20000724/pritchard_pfv.htm [Accessed 20 June 2007]

[xxxv] Russell L, 2004, Karma Shithead Card Game [online]. Available: http://www.raydeater.com/karma/shithead.html [Accessed 28 June 2007]

[xxxvi] TeamSpeak Systems, 2004-2007, TeamSpeak [online]. Available: http://www.goteamspeak.com/ [Accessed 20 June 2007]

[xxxvii] Wikipedia, 2006, Card Game [online]. Available: http://en.wikipedia.org/wiki/Card_game [Accessed 28 June 2007]

[xxxviii] Wikipedia, 2003, David Parlett [online]. Available: http://en.wikipedia.org/wiki/David_Parlett [Accessed 28 June 2007]

[xxxix] Wikipedia, 2005, Peer-to-peer [online]. Available: http://en.wikipedia.org/wiki/Peer-to-peer [Accessed 28 June 2007]
[xl] Wikipedia, 2005-2007, Shithead (card game) [online]. Available: http://en.wikipedia.org/wiki/Shithead_(card_game) [Accessed 28 June 2007]

[xli] Xfire Inc., 2007, Online gaming stats [online]. Available: http://www.xfire.com/cms/stats/ [Accessed 03 July 2007]

[xlii] Zhu T, 2005, Welcome to TZhuSoft Shithead Computer Game [online]. Available: http://members.shaw.ca/tzhu/shithead/ [Accessed 03 July 2007]

Chapter 8

Documentation

8.1 Contents of the CD

· SMOCGSetup.exe

· The setup executable for installing the SMOCG program

· Code

· The SMOCG project file and assets. Note that this will need Microsoft Visual C# 2005 Express Edition with XNA Game Studio Express 1.0 Refresh to open or compile.

· Dissertation_DamianConnolly_323470.doc

· A soft copy of this dissertation

· Documentation

· The UML, use-case, sequence diagram, and Gantt chart featured in this dissertation

8.2 How to Install SMOCG
Run the SMOCGSetup.exe available in the folder. Follow the instructions to install the program. Due to the nature of XNA, the computer must have the .Net 2.0 runtime, the DirectX runtime, and the XNA runtime installed.

8.3 How to Play

The following figure 8.1 shows what the user will see upon starting the game. Areas are annotated and described below.

[image: image7.jpg]

Figure 8.1: The view presented in the game

1. These are the cards in your hand

2. Your face-up cards – they can be swapped with your hand cards before a game begins

3. You face-down cards – you can’t look at these and they must be played blind

4. The currently focused card appears here for easy viewing

5. The currently selected cards appear here. Only cards of the same value may be selected

6. The last four cards in the pickup pile appear here, with the oldest appearing faintest

7. The different actions that you can perform appear here. Buttons will become active when their action is allowed

8. The bottom HUD message area give you hints on what you can do

9. The log area records the actions that have happened in the game and also displays any comments that the player has made

10. The text input GUI for sending messages to the other players

11. The large number in this widget signifies which player’s go it currently is, while the smaller number signifies your player number. The colour of the widget is also important, with light red signifying that the game has yet to start, and light green meaning that the game has started.

12. This is your opponent in the game. It is possible to see his face-up cards by focusing on them with the mouse

13. The center of the table contains three piles, the deck where player’s receive cards from, the pickup pile where cards are placed, and the burned pile where cards are placed when they’re permanently taken out of the game.

8.4 Rules

At the start of the game, each player is dealt three cards face down in front of them, which they cannot look at. They then get three cards face up on top of those, and finally three cards that make up their playing hand. Before the game starts, the player can swap any of the three cards in their hand with any of the face up cards in front of them, in order to make a strong set for later in the game. Any remaining cards are placed in the middle of the table, and become the pack.

The aim of SMOCG is to not be the last person to get rid of their cards. The dealer (usually the last person to lose) starts play, creating a pick-up pile in the centre of the table, and play continues clockwise. In its simplest form, the current player has to place a card (or two or more of the same denomination) of equal or higher denomination (suits are ignored) than the previous card played. They then pick up from the deck so they have at least three cards in their hand (unless the deck is empty, or they already have three or more cards still in their hand). If the player cannot play a legal card, then they must pick up all of the cards in the pick-up pile. It is also possible for a player to pick up the pick-up pile even when they can play a legal card, for strategy reasons.

When the players have no more cards in their hands, and the deck is empty, then they can play the three face-up cards in front of them, and subsequently, the three face-down cards, though these cards are played blind.

There are four trick cards in SMOCG, namely two, seven, eight, and ten. Two will reset the count back to two, meaning the next subsequent card can be anything. Seven means that the next person’s card has to be lower than seven. Eight is invisible, meaning that the next player plays using the meaning of the card under the eight. Ten will cancel the current pickup pile, taking it out of play, and allowing the player another go. The pack can also be cancelled by putting four cards of the same value on top. Trick cards can be played on any card.

If a player makes another player pickup, then that player receives another go. If a player makes another player pickup on the first player’s last card, then play goes anti-clockwise until an active player can be found.

The last player to get rid of all of their cards looses.

8.5 Controls

Controlling the view:

Mouse

Deal the cards:

D

Pickup:

P

Reset game:

R

Signal ready to begin:

B

Select same cards:

C

8.6 Credits & Acknowledgements

Supervisors:

Dr. Jon Purdy

Mr. Warren Viant

Programming:

Damian Connolly

Artwork:

Damian Connolly

Sound:

Shane McKenna

Thanks to everyone who helped throughout the project, whether by participating with the contents, or simply testing and giving opinions. You know who you are.

� Programmer Art – Low quality graphical placeholders created by programmers, used when the final artwork is as yet unfinished and a visual representation is needed to test the currently build.

� Dangling pointer – when the resource that the pointer is referencing is deleted, but the pointer itself isn’t set to null, so subsequent referencing could produce very strange effects.

