Multiplayer Football Simulation Project Report

[image: image1.jpg]‘Connected to the serverl Press €' again to ection
Server: Comected

Damian Connolly

Introduction

This is the project report for my Simulation and Concurrency 5-a-side football project. It’s split into five sections. In the first section I will go through my design and implementation and the system architecture that I used to make the game. The next section will be a short critique on Physically Based Modelling and the different techniques I used to simulate realistic behaviour between the objects of my game. Following that will be a critique of my project management through the project, followed by the testing strategy I used to test fault tolerance etc. Finally, there will be a short overall critique of the project.

Design & Implementation

Right from the offset, my design was shaped by some of the requirements of the simulation, namely that all the physics and calculations needed to be done on the server program, and that threading was a requirement. As all the game critical data has to be sent over the network, the resulting choice was whether to use bit-arrays, or char * arrays. I opted for char *, as I would be able to use the convenience and adaptability of the string and stringstream classes.

The need for a large number of the elements of the game to be on separate threads meant the use of a separate Thread class, developed in lectures and seminars, which objects could simply inherit from as needed. Each connection to the server was set up as a separate connection, and I made the decision to use the separate thread to control my networking part, making each connection responsible for sending and receiving data to it’s client. By putting the message receiving function on a separate thread, it made fault tolerance a lot easier, another requested feature. If the receiving function failed, as in the listening thread returned with an error, then it was safe to assume that the client’s connection had been dropped, and his player could subsequently be taken over by the AI. This allows for near simultaneous pickup in dropped connections, meaning that the game would not suffer from waiting for a “dead” player. It also meant that each connection could send and receive independently of each other, so that other clients would not suffer any lag as a result of waiting for another player’s slow connection.

Each client was also synched with the server, meaning that the server would only send messages to the client if it received a message in return, be that a new command, so simply a “message received” confirmation. While this would mean that some clients would inevitably be getting update quicker than others, as a result of play-testing on other computers, particularly ones that don’t have the same performance of the lab computers, I found it to be necessary, as if a client was on a slower computer, his CPU cycles were being fully taken up by messages coming in from the server, meaning that any commands he tried to send through would simply not register. By putting in this simple feature, it meant that even though a client may miss a few position messages, he would still be able to enjoy the game.

Another by-product of all the computational requirements being undertaken by the server was that same objects had very different implementations depending on whether they were on the client or the server side. For example, the player on the client side simply needs to know what shape it is, whereas on the server side, it has shape, mass, velocity, colour, and a relative meaning in the game. By this I mean that on the client side, 10 players are simply registered; it isn’t until the client joins with the server that each of these players gets a team, number, and a context.

Of the problems I had in the design, there were two that provided the main challenges. One was the messages themselves. Care had to be taken that the message received was the full, and right, message, and not the aftermath of the previous message. This was a major problem before I synched up the client and server. Messages were coming in so fast that the end of one message would pick up the start of the next as well, meaning that the command that identifies that message was lost, and thus the message was treated as junk and no update was performed. This lead to a number of graphical glitches as frames were dropped, and in some cases seconds of inactivity until the client could synch with the server again. Also, as the messages were essentially string form, the data had to be extracted from them. I used a number of stringstreams for this, though I feel that this is one area of my program that could stand for some streamlining and improvement.

The second problem I had was essentially one of a funnel. All information passing between the server and client was passing between one point, and a large number of functions had to be implemented to ensure the smooth transition of data. This was especially evident in displaying information to the client GUI. An update of information on the server would typically follow a game state – network manager – server connection – client connection – client object – GUI path. This is another feature of my program that I feel could be improved to enhance performance

Overall, I’m pleased with my design. In play-testing it across the network, there was no relative loss of speed and the overall experience was very smooth and enjoyable. I successfully connected up five clients across the network to play using a combination of joysticks and keyboard input (which I implemented as a testing feature but left as it allowed a greater number of players to play). I won 5-4, which I feel is the best indicator of good design on my part.

UML Diagrams

Client

[image: image2.jpg]i

[t [t gl

e N e e

o] [comen)

This is the UML diagram from the client side program. Utility classes are shown in the top-right hand corner. As the client side was mainly concerned with the display of the data, it’s fairly simply, with the main concentration centring on the actual connection to the server (Client and ClientConnection). NetErrorCode is a short class used to display message in relation to Windows error codes, received on a dropped connection etc.
Server

[image: image3.jpg][Cosetianage]

P

The server side UML is slightly more complex, owing to the need to put separate parts of the program on different threads, and all the communication between parts eventually centring on the connection to the client (PlayerConnection). NetManager sets up the initial socket, listens for incoming connections, before creating and controlling all the PlayerConnections currently active, while AIManager controls all other player actions. The PhysicsEngine is where the bulk of the processing is performed. It also has sole control of the SharedMemory object, where the positions etc. of all the objects are recorded. Again NetErrorCode is used to display readable error message.

Physics Based Modelling

I found the physics part of the assessment to be the most time consuming, in particular the collision detection and reaction. My initial problem was whereas I was calculating the exact time of collision with a plane and reacting accordingly, I was using a step method for the collision detection between the ball and players. In order to change this to an exact time method, I used the maths program Maple to unravel an equation presented in a lecture to a solvable equation in C++. While this worked well, I still had trouble integrating multiple collisions in one frame, particularly when a player is in constant collision with the floor plane and also collides with the ball in the same time step. In the end I made a choice between playability and realism by culling out repetitive collisions after a set number and making certain collisions a priority, for example, player-ball above player-floor if they occurred in the same time step.

Elsewhere, the physics based modelling system worked really well and made for an entertaining game. Some tweaking and refining had to be done when moving the player, as because you move by applying force, it’s very easy to shoot around the ball just as you’re about to hit it.

One part that I wanted to implement but had to drop due to time constraints was the rigid-body system of modelling. In hindsight, better understanding of the concepts and effort required to implement such as system, as well as more experience dealing with the basics of proper physics implementation, would allow more experimentation time to develop such a system.

I also had to drop the spring-and-dashpot net, again due to time constraints. While I understand that it won’t count in the marking of this project, it is something I have planned to add in for my own benefit in the near future.

Comparing the physics in this simulation with the physics I developed last semester for the warehouse project, I feel that physics, when properly implemented; by this I mean in best effect for the game, as well as making it more realistic, can make a game more engrossing and enjoyable.

Project Management

Taking reflection from my project management in the warehouse project last semester, I planned more for this project, and set out clear goals of what I wanted to achieve by the end of it. I’m quite pleased with what I accomplished as I wanted to focus more this semester on creating a game that people would want to play. While the game mechanics are simply integrated, the project does feel more like a polished game and I feel is subsequently better to play. I plan to take some time in the future to add in parts that I failed to complete in time, such as the net, as well as improve other features, such as the GUI, interaction, and art. While features such as this (as well as extraneous graphical features such as shadows and reflections) weren’t marked, I wanted to incorporate them into my project, as much to create a good portfolio piece as to create a better game.

One area that I need to improve in my project management is deadline control. A tighter and stricter grip on what features needed to be completed by certain dates needed to be implemented. Too often I would find myself being distracted by developing fine details or focusing on specific parts of the program to the neglect of others. At times I had to intentionally stop “feature-creep” becoming a part of my program.

Other features that I found worked in my last project were also used here, namely repeated backups (including 6 on the final day) and spending a large amount of time commenting my code. Due to the experience I received last semester I was also able to avoid all of the various time-sinks that occurred due to lack of knowledge. This meant that I was able to write code faster and to a better quality, something I hope to continue next semester.

Overall, I’m quite happy with this project, and it’s something that I want to continue to work on in my free time.

Testing Strategy

The main bulk of my testing strategy for this project focused on the passing of information between the client and server. In the specification it was requested that dropped connection be immediately taken over by the AI with no detrimental effect to the game (aside from perhaps loss of skill). I achieved this by putting the message receiving function on each client connection on a thread, meaning that if it returned with an error, then it was likely that the client’s connection had dropped and appropriate measures could be taken. This simple measure worked very well, and allows for near-instantaneous recovery by the AI.

The next problem I faced was one of mixed message, that is, messages that contain the start, and hence the identifying command, of the next message. This was a major problem for me, as it meant that some clients could freeze for seconds at a time until they re-synched with the server. I added code to synch each client connection on the server side, with it’s client, meaning that once it sent a message, it would wait for some reply, be it a command, or simply a “message received” confirmation.

This was of special importance when it came to testing over a server, and it performed well. It also helped alleviate the problem if the client was on a slower computer, as I discovered when I tested it at home. Messages were coming so fast from the server, that the client’s CPU didn’t have any time to process or send command messages. As the messages were coming so fast, they frequently got jumbled and split up, as the first part of each message I send is its size. If this part is lost, then problems can occur. With further testing I was able to cull this problem.

Another part that required a lot of testing involved the use of mutexs to control data being written to and read from. With the large amount of threads present in the program, care had to be taken in not reading from memory currently being written to. These had to be present on the server side, when the PhysicsEngine class was updating the objects, as well as on the client side, where, as the receive function as on a different thread, the object’s updated position would be applied on that thread.

Conclusion

Overall, I’m very pleased with my project. Some areas can stand for improvement, and there are other features, such as the net, which I plan to implement in the future, but the game in its current incarnation is a game. Even though that part of the project wasn’t marked, I don’t feel that it was time wasted, as I learned a lot of valuable lessons and gained a lot of experience in how to add polish to a game and add the basic features that we take for granted but notice immediately when they are missing.

Working with proper physics, networking and threads had been a good, if at times trying, experience. It has definitely paid off, especially the networking addition, as seeing people get together and get enjoyment out of playing my game is why I wanted to make games in the first place.

I was able to put the knowledge I gained last semester to good use, and learn from my mistakes, which made this project a much better experience in terms of coding.

Appendix

Code Samples

Unravelling the moving sphere – moving sphere collision detection algorithm

I use the math program Maple to achieve this and it allowed me to predict the exact timse a collision between two moving spheres occurred. It works simply by passing two Object’s into the function along with delta time. One of the Object’s is taken to be stationary relative to the other.

bool PhysicsEngine::intersectBall(Object * const statObj, Object * const movObj, const double dt, double & lamda, Vector3d & relVelocity){

//use relative velocities eg, ball is stationary, player is moving, etc

//let the radius of the ball and the object be r1 and r2

double r1 = movObj->radius();

double r2 = statObj->radius();

//get the relative velocity of the ball with respect to the player

Vector3d relVel = relVelocity = movObj->velocity() - statObj->velocity();

//let pt0 be the position of the movObj at time 0 - use as vector A

Vector3d A = movObj->position();

double ax = A._x;

double ay = A._y;

double az = A._z;

//let pt0 be the position of the ball at time dt - use as vector B

Vector3d relAcc = movObj->acceleration() - statObj->acceleration();

Vector3d B = A + (relVel * dt) + ((relAcc * dt * dt) / 2.0);

double bx = B._x;

double by = B._y;

double bz = B._z;

//let q be the position of the object - use as vector Q

Vector3d Q = statObj->position();

double qx = Q._x;

double qy = Q._y;

double qz = Q._z;

//roll out the equation:

//p(t).p(t) - 2p(t).q + q.q - (r1 + r2)^2 = 0

//and solve the quadratic. this was unrolled using maple

double alpha = (-(2.0 * bz * az) - (2.0 * bx * ax) - (2.0 * by * ay) + B.Dot(B) + A.Dot(A)) / (dt * dt);

double beta = (2.0 * (A.Dot(-A) - (bx * qx) + (bx * ax) - (bz * qz) + (qx * ax) - (by * qy) + (qy * ay) + (bz * az) + (qz * az) + (by * ay))) / dt;

double gamma = (-2.0 * r1 * r2) - (2.0 * qz * az) - (2.0 * qy * ay) - (2.0 * qx * ax) + Q.Dot(Q) + A.Dot(A) - (r1 * r1) - (r2 * r2);

//find the determinant: b^2 - 4ac. if it's < 0 then there's no collision

double det = (beta * beta) - (4.0 * alpha * gamma);

if(det < 0)

return false;

else{

double root = sqrt(det);

double t1 = (-beta + root) / (2.0 * alpha);

double t2 = (-beta - root) / (2.0 * alpha);

if((t1 > 0.0 && t1 < dt) || (t2 > 0.0 && t2 < dt)){

if(t1 > 0.0 && t2 > 0.0) lamda = min(t1, t2);

else if(t1 > 0.0) lamda = t1;

else lamda = t2;

return true;

} else

return false;

}

}
