
GXBase Introduction
James Ward

Created: 22nd August 2003.

Updated: 31st October 2003.

This is a brief introduction to the GXBase library, and explains how to create a simple application that does
some OpenGL drawing.

Including GXBase
In order to use GXBase, you must include the GXBase header files so that your program will compile, and
link against the GXBase library files, so that the linker can build the library into your application. In fact, the
second step (linking) is done automatically, if you have included the GXBase header correctly.

All the GXBase classes use their own namespace, called simply gxbase. This helps to prevent name
collisions between the GXBase classes and any other libraries that you might use. Normally, you can tell the
compiler that you wish to use this namespace immediately after including the GXBase headers.

Therefore, the recommended way to include GXBase is as follows:
#include “GXBase.h”
using namespace gxbase;

// your code goes here

Create an Application Class
The first step in creating an application is to derive a new application class from the App base class, and to
create a single instance of that class:

1. Derive MyApp class from App.

2. Create a single instance of MyApp.

The following example shows two files MyApp.h and MyApp.cpp that together implement an 'empty'
application that will run and then exit.

MyApp.h contains:
#include “GXBase.h”
using namespace gxbase;

// Derive our custom application class from the base class
class MyApp :public App {
};

MyApp.cpp contains:
#include “MyApp.h”

// Create a single instance of our application, so it can run
static MyApp theApp;

Note: you do not need to supply a main() function; this is provided by the framework.

The application class offers a number of event handlers in the form of virtual functions. These are used to
notify your application when particular events occur. To use them, you simply override the virtual function
with your own implementation. Your function will then be called automatically when that event occurs.

For example, the App class provides an event handler called OnCreate that will be called when the
application is first created. This is useful to initialise your application, for example to load configuration
files, or to process command line arguments. The following example simply prints a 'hello world' message

when the application first starts.

MyApp.h
#include “GXBase.h”
using namespace gxbase;

class MyApp :public App {
public:

void OnCreate() {
MsgPrintf(“hello world\n”);

}
};

Create a Window Class
Having created an application class, the next step is to create one or more windows that can be used to
display OpenGL drawing. This is very easily achieved by deriving your own custom window class from the
GLWindow base class, and implementing one or more of the event handlers to perform your custom
drawing. Having done this, you can simply add your custom window(s) to the application class as member
variables.

The following steps are required to create a new window:

1. Derive MyWnd from GLWindow class.

2. Insert MyWnd into MyApp as a member variable.

3. Implement custom drawing code for the various event handlers on MyWnd.

This more easily explained with a simple example, so the following code demonstrates how to create a
simple application called MyApp that includes a custom window MyWnd that does some simple OpenGL
drawing.

MyApp.h contains:
#include “GXBase.h”
using namespace gxbase;

// Derive our custom window class from the base class, it
// just overrrides the OnDisplay event to draw a cross
class MyWnd :public GLWindow {
public:

void OnDisplay() {
glClear(GL_COLOR_BUFFER_BIT);

// draw a cross
glBegin(GL_LINES);

glVertex2f(-1,-1);
glVertex2f(+1,+1);
glVertex2f(-1,+1);
glVertex2f(+1,-1);

glEnd();

SwapBuffers();
}

};

// Derive our custom application class from the base class
class MyApp :public App {
public:

MyWnd win; // the window is a child of our app
};

MyApp.cpp contains:
#include “MyApp.h”

// Create a single instance of our application, so it can run
static MyApp theApp;

The MyWnd class is based on the GLWindow class, and overrides the OnDisplay event handler in order to
do some OpenGL drawing. This example just clears the window, draws a cross, and swaps the back buffer
to the front to make the drawing visible (by default, windows are created with double-buffering enabled).

To create the window and make it appear, we need to create an instance of our custom window. The
simplest way to achieve this is to add MyWnd as a member variable of our application class. If we wanted
to create a second window, identical to the first, we would only need to add a second member variable to the
MyApp class as shown below:

class MyApp :public App {
public:

MyWnd win1, win2;
};

You can have as many different types of window as you choose, and you can share code between them by
using the normal inheritance rules.

Looking at the example above, you might be wondering how the OpenGL viewport is made to track the
window size? In fact the default implementation of the GLWindow::OnResize event handler does this for
you automatically. In general, the framework tries to apply some reasonable default behaviour for most
cases, but does allow you to override those functions to provide your own implementation when required.
The same is true of the OnDisplay method for example, which will automatically clear and swap the buffers
if you don't provide any drawing code.

Window creation order
The windows are not created at time of construction, but are instead created immediately after the
App::OnCreate has finished executing. This allows window settings such as size and position to be
adjusted before the window is created, by placing your initialisation code either in the constructor of your
custom window class, or in the MyApp::OnCreate function.

For example, you can change window settings in the constructor, so that all windows of that class will be
created with the same settings:

class MyWnd :public GLWindow {
public:

MyWnd() {
// all MyWnd objects will now use this size:
SetSize(256,256);

}
};

Alternatively, you could initialise your windows in the application OnCreate event:
void MyApp::OnCreate() {

w.SetSize(640,480);
w.SetPosition(200,50);

}

There are a few cases where you might want to create the window early; for example so that you have access
to a valid OpenGL context so that you can check to see if a particular OpenGL extension is supported.

This can be achieved by simply calling the GLWindow::Show function to ensure that the window is
created. An example is shown below:

void MyApp::OnCreate() {
w.Show();
if (!w.HasExtension(“GL_EXT_vertex_array”))

MsgPrintf(“Vertex array extension not found\n”);
}

In general though, code that requires an OpenGL context at time of creation is best placed in the
GLWindow::OnCreate function.

Memory allocation
The window classes are typically small enough to safely allocate as members of the application class, which
is normally declared statically. However, if you prefer to allocate on the heap (using new and delete), then
you can allocate in the App::OnCreate event and release in the App::OnDelete event.

Simple Animation
In the examples shown so far, the window contents are only redrawn when required (for example, when the
window is uncovered or resized). If you want to create animation, you will normally need to refresh the
window more frequently. This can be achieved by calling the GLWindow::Redraw method, which requests
that the window contents are redrawn. This actually schedules an event to redraw the window, and the
GLWindow::OnDisplay event handler will then be called automatically at the next available opportunity.

The most efficient way to handle window refreshes is to call GLWindow::Redraw whenever something in
your display changes that would require a redraw. For example, when an object is moved with the mouse.
Another alternative is to simply use the GLWindow::OnIdle event to continuously request redraws.

An example of a simple rotating cross is shown below. This uses the simplest approach of requesting a
redraw from the OnIdle event as described above.

class AnimWnd :public GLWindow {
public:

void OnDisplay() {
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();

// rotation angle increases with time
glRotated(45.0 * App::GetTime(), 0,0,1);

// draw a cross
glBegin(GL_LINES);

glVertex2f(-1,-1);
glVertex2f(+1,+1);
glVertex2f(-1,+1);
glVertex2f(+1,-1);

glEnd();
glPopMatrix();
SwapBuffers();

}

void OnIdle() {
Redraw(); // request to redraw the window

}
};

The above example also demonstrates how the App::GetTime function can be used for simple animation
that is independent of the speed of the computer. Using this method, the cross will always rotate at the same
speed (45 degrees per second) on any computer, although the animation will of course appear smoother on
fast machines.

Mouse and Keyboard Events
You will often want to control your application with the mouse and keyboard. There are several events
provided by the GLWindow class that make this possible:

OnMouseMove(int x, int y)
OnMouseButton(MouseButton button, bool down)
OnKeyboard(int key, bool down)

To use these, you simply override them in your custom window class, and they will automatically be called
when a mouse or keyboard event occurs.

Using OnMouseMove
The OnMouseMove event is sent whenever the mouse pointer is moved inside the window. The parameters
specify the current (x,y) position of the pointer in pixels, relative to the bottom left hand corner of the
window.

The example below shows how OpenGL drawing can easily be made to track mouse movement in real-time.
// custom window that tracks mouse movement
class TrackWnd :public GLWindow {
private:

float u,v; // used to store mouse coordinates
public:

TrackWnd() :u(0),v(0) {}

void OnDisplay() {
glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_LINES);
glVertex2f(-1,-1); glVertex2f(u,v);
glVertex2f(-1,+1); glVertex2f(u,v);
glVertex2f(+1,-1); glVertex2f(u,v);
glVertex2f(+1,+1); glVertex2f(u,v);

glEnd();

SwapBuffers();
}

void OnMouseMove(int x, int y) {
// scale mouse into range -1 to +1 on each axis
// 'if' tests are used to avoid division by zero
if (Width())

u = 2.0f * (float)x / (float)Width() - 1.0f;
if (Height())

v = 2.0f * (float)y / (float)Height() - 1.0f;

// redraw when mouse moves
Redraw();

}
};

In this example, notice that the mouse coordinates (x,y) are sent to the OnMouseMove function as integer
pixel coordinates, and have to be scaled to match the default window coordinate system. Note that the
GLWindow::Width and GLWindow::Height methods can be used to find the current size of the window
in pixels. Similarly, the GLWindow::Aspect method will return the aspect ratio (width/height) for the
current window, as a floating point value (and is safe when Height=0). This is suitable for use with OpenGL
functions such as gluPerspective.

Using OnMouseButton
The OnMouseButton event is sent whenever a mouse button is pressed or released. If the button is held for
a long period, the mouse pressed event may be sent several times (auto repeat). The event has two
parameters: a button identifier (which indicates which button was pressed/released), and a flag called
down, which indicates if the button is down (true) or up (false).

The example below demonstrates how to use OnMouseButton, changing the drawing colour to either Red,
Green or Blue, depending upon which mouse button was pressed.

void MyWnd::OnMouseButton(MouseButton button, bool down) {
if (down) return;
switch (button) {
case MBLeft:

glColor3f(1,0,0); // red
break;

case MBMiddle:
glColor3f(0,1,0); // green
break;

case MBRight:
glColor3f(0,0,1); // blue
break;

}
Redraw();

}

Notice the first line that just returns immediately if the button is pressed down. This ensures that the code in
the switch statement is called only when a particular button is released. This is because the OnMouseButton
event handler will be called twice for each button; once when the button is first pressed down, and again
when that button is released.

Using OnKeyboard
The OnKeyboard event is sent when a key is pressed or released. The event has two parameters: an integer
key identifier (which gives the system keyboard code), and a flag called down, which indicates if the key is
down (true) or up (false).

The following example changes the drawing colour to either Red, Green or Blue when the R, G or B keys
are pressed, then redraws the display if required:

void MyWnd::OnKeyboard(int key, bool down) {
if (!down) return;
bool needRedraw = true;
switch(tolower(key)) {
case 'r':

glColor3f(1,0,0); // red
break;

case 'g':
glColor3f(0,1,0); // green
break;

case 'b':
glColor3f(0,0,1); // blue
break;

default:
needRedraw=false; // some other key..

}
if (needRedraw) Redraw();

}

