PAGE
08968 AI Pacman Controller Project Report

08968 AI Project Report

AI Pacman Controller

Damian Connolly

Introduction

This is the project report for my AI Pacman Controller. It’s split into four sections. The first section will deal with the analysis of AI requirements for the Pacman game. I will go through my initial thoughts on the project and what I believed to be required to allow Pacman to defeat all four ghosts. The second section will deal with the design of the AI controller and how I set out to achieve the requirements from the first section. The third section will deal with the implementation and testing of the controller, including problems and revisions as a result of testing. Finally, the fourth section will show the results of the controller against different numbers and combinations of ghosts, and my analysis of the results and what I think could be done to make it better.

Analysis of AI Requirements for Pacman

To determine the behaviours required for a successful implementation of AI for Pacman, I first spent time observing myself and others play the game, and noted relevant points, such as strategy, avoidance of ghosts, use of the power pills, use of the wormhole, and overall score. The strategy of seasoned players differed very much from that of players relatively new to the game. Seasoned players tended to go for high point scores, using the power pills to actively hunt ghosts, while collecting the fruit as often as possible. They also tended to take more risks, allowing ghosts to get closer while eating dots. New players on the other hand tended to avoid such risks and kept a safe distance from ghosts. Power pills were used for points gain, or to get out of trouble if a particular ghost was near. Fruit was collected when passing, or when lurking around in the area, and the wormhole was rarely used. Their overall score tended to be lower, as well as their success rate, as trying to keep such a distance from ghosts tended to leave the player leading himself into traps.

When brainstorming my AI requirements I decided to take a stand roughly in the middle of the two extremes. I didn’t want my Pacman getting too close to the ghosts, and I also wasn’t too concerned with the high score. I wanted my Pacman to take opportunities as they arose, and also not be afraid to cut across a ghost’s path if able to do so. I also decided to take a more pro-active stand, by constantly seeking the end game state, i.e. all dots eaten. I decided on this after watching seasoned players for a length of time. Rarely did they go into “avoidance mode”, instead seeking out better routes to their goal. I reasoned that having Pacman constantly seeking dots, while simply avoiding the ghosts rather than retreating from them, would be the quickest way to achieve end game, and thus less time for my Pacman to get trapped by two ghosts.

I thus came up with a priority list as such:

· Seek dots above everything else – emphasis on most value in path, not simply the closest dot

· Seek blue ghosts if in vicinity and have been blue for a relatively short period

· Seek power pills if in vicinity

· Seek fruit if optimum path goes by / through fruit position

· Avoid ghost’s “worst path” (i.e. the path that means the worst for Pacman – heading straight for him) whenever possible, but if required, then choose path least likely to result in death

I wanted above all to keep my AI simple, and thus decided against any sort of state machine / fuzzy logic system implementation. By keeping it simple, there would be less chance of confusion, as well as making it easier to debug any problems that would arise. I surmised that if Pacman could make his best moves over a set time period that would take into account the ghost’s worst move’s for Pacman, it would be possible to survive and beat the game.

With this in mind I decided that using A* - MiniMax hybrid for movement would be the best solution. Pacman would choose his optimum value path, taking into account the ghost’s worst move for him.

Calculating the heuristics to use in determining the best value path would take into account the amount of points value in the path, with value diminishing based on distance. The worst path of the ghost’s would also be taken into account, applying a negative value to the ghost path cells, with the cells closest to the ghost getting the most penalization. This would also diminish with distance. Blue ghosts would apply a positive value to cells, with the cells closest to the ghost getting the most benefit. This would diminish with distance, as well as time spent as a blue ghost. The longer spent, the more risk is involved in chasing them, and therefore the less potential value in pursuing such a path.

I also wanted to incorporate a separate window that would show Pacman’s chosen path, as well as the ghost’s worst paths, in order to help debugging the subsequent behaviour of Pacman.

Design of AI Control Strategy for Pacman

Before starting the game I initialize a data structure for the level. I initially did this to help make the A* algorithm faster, but it extended easily to help decide Pacman behaviours. A fault of the initial version of the controller meant it was very hard to determine the start of the game, yet this was fixed after the lab demonstration. At the start of each game, I go through the map and assign data to all the walkable nodes, such as what’s contained on that node, walkable neighbours to the node, and an initial value, weighted on importance. Power pills are more important than fruit, than dots, than ghosts.

In the beginning I concentrated on winning the game with no ghosts present. To accomplish this a very simple heuristic was used; simply get the nearest cell with the most value. As value diminished with distance, this inevitably always led to the neighbouring cell, unless Pacman was close enough to a power pill or fruit, whose value would negate the distance required to travel to get there.

While this worked I knew I’d have to have a different implementation for the introductions of the ghosts, as my original plan takes the ghosts movements into account, and a one cell path wouldn’t work. I decided to implement an area around Pacman, where he would find the path with the most value and travel there. In the event that no path was found, then I’d use my data structure to find all the cells that I haven’t visited yet.

To find the best path:

Take Pacman’s position and define grid around it, taking into account the boundary walls

Double tempValue = 0.0

For each walkable tile in the grid

Do an A* and get the total value of the path – value of each cell is diminished based on distance to Pacman

If found path, and is a greater value than tempValue, set as chosen

Set tempValue to pathValue

End loop

If no path found

For each walkable tile in data structure

If not visited

Do an A* and get best path, etc

This now had the desired effect. Pacman would take a greater path into consideration when moving, not just the nearest cell.

When implementing the ghosts, I do an A* search from their position to Pacman, to find the shortest path, and hence the worst possible move for Pacman, and adjust the value of the path accordingly

For each ghost

Find shortest path to Pacman – refine to first 4 steps

If blue

Get time as blue so far, and estimate remaining time in %

For each cell in path

Add a greater value to cell, based on distance to ghost’s current position * percentage time left as blue ghost

Lower the cost of traveling to these cells based on the same heuristic

Else if not blue

For each cell in path

Reduce the value of the cell, based on distance to ghost’s current position – closer to ghost, the lower the value

Increase the cost of visiting the cell based on the same heuristic

Thus when Pacman determines his best value path, the ghost values are taken into account. There is less chance of Pacman moving into the path of a ghost, unless it’s the lowest cost / highest value path.

By carefully balancing, the value of objects – I found that too high a value for fruit meant that Pacman was constantly detouring to get it, while too high a value for the power pills meant that Pacman ate them first, essentially leaving him defenseless for the rest of the level – as well as the penalization and rewarding of cells that lie along the ghost’s path, I could successfully avoid the ghosts, while still collecting dots.

I also had to balance the length of Pacman’s search grid as well as the length of the ghost’s worst paths. In increasing the length of Pacman’s initial search grid, he tended to avoid the ghosts more, to the detriment to the game, as he would frequently close himself off into one corner and get easily trapped, or spend too much time looking for a path around the ghosts. By having the length too small, he couldn’t see far enough to avoid traps, particularly around corners and along long corridors. The same applied for the length of the ghost’s paths. By having the ghost path too long, it was becoming increasingly difficult to find a safe path through, while too short a path meant that Pacman mightn’t have the proper time needed to escape from a potential trap.

I also adapted the search function to always return a path, even if it meant returning a negative value path, i.e. one that crosses a ghost’s path. Even though Pacman only chooses this option when all other paths return worse, it does mean that he can “race” ghosts to an intersection, or escape a trap by choosing the path away from the closest ghost, even if it means traveling closer to an incoming ghost. While this can involve close encounters, I feel that it accurately models the behaviour of a human player faced with the same decision. Often, if a human player felt he could make a path before a ghost, he would take it. Without this feature, Pacman would immediately turn around when another ghost is about to block him in, thus trapping him further.

Implementation & Testing of AI Controller

In the first implementation, I tested Pacman against no ghosts, with the value of items as such: food = 10, power pill = 100, fruit = 100. These values were chosen as they represented the actual point value of the item. The search heuristics were as described in the last section, with a search of an initial grid around Pacman, before going to the entire map if no path was found. The results are shown below:

	Win
	Red
	Orange
	Green
	Turquoise
	Points

	1
	0
	0
	0
	0
	2230

This provided an adequate points total, though it resulted in the power pills being eaten first, which, even though there was no ghosts present in the level, was something that I wanted to avoid, as it would mean that Pacman was left with no form of defense for the majority of the level, and it was not a tactic used by seasoned gamers. The search grid worked well for avoiding repeatedly going for the fruit. As Pacman would always choose the path of most value, deviating to grab the fruit wasn’t deemed to be valuable enough. While this worked to the detriment of the overall score, it is a something that I myself would do. Testing increasing Pacman’s search grid by 1 each way only resulted in an additional points gain of 100.

When testing against the ghosts, I changed the value of the items to: food = 10, power pill = 25, fruit = 20. The main reasons for lowering the power pill and fruit values were that I didn’t want Pacman eating all the power pills first, thus leaving himself defenseless, while lowering the fruit meant that he would sacrifice points gain for quicker game success. Using these values against no ghost resulted in the following:

	Win
	Red
	Orange
	Green
	Turquoise
	Points

	1
	0
	0
	0
	0
	2030

As you can see the resulting points loss is 200, or two visits to pick up the fruit. I was quite happy to allow for this, as by using these new values in the heuristics, I gained a better advantage against the ghosts, while losing relatively small points when no ghosts are present.

After this, I tested my Pacman controller against each of the four ghosts individually. Ghosts would find their quickest route to Pacman, and therefore the worst moves for Pacman. The cells along this path were then penalized using the methods described in the design section. The results are below:

	Win
	Red
	Orange
	Green
	Turquoise
	Points (Av. Over 5 runs)

	5(W)
	1
	0
	0
	0
	2350

	5(W)
	0
	1
	0
	0
	2280

	5(W)
	0
	0
	1
	0
	2330

	5(W)
	0
	0
	0
	1
	2120

Greater points totals were as a result of eating blue ghosts, or eating fruit if the ghost forced Pacman away from his chosen path. Running Pacman against all four ghosts resulted in the following results:

	Win
	Red
	Orange
	Green
	Turquoise
	Points (Av. Over 5 runs)

	3(W) 2(L)
	1
	1
	1
	1
	2882

While the average points rose, the win ratio fell to 60%. I tested the effect of increasing, then decreasing Pacman’s initial search grid by one (from its original of 9x9) to see if it improved the ratio. The results were as following:

	Search Length
	Win
	R
	O
	G
	T
	Points (Av. 5 runs)

	11x11
	5(W) 0(L)
	1
	1
	1
	1
	2740

	7x7
	2(W) 3(L)
	1
	1
	1
	1
	2054

As found, decreasing the size of Pacman’s initial search grid by one both lessened the average points as well as the win ratio. Increasing it had a positive effect on the win ratio, but the average score dropped slightly. I tested again, this time increasing, then decreasing the ghosts path by one (from it’s original of 5 cells long), so see the effect it would have on the results. I kept Pacman’s original search grid (9x9) for this.

	G. Path
	Win
	R
	O
	G
	T
	Points (Av. 5 runs)

	6
	3(W) 2(L)
	1
	1
	1
	1
	2306

	4
	4(W) 1(L)
	1
	1
	1
	1
	3116

Decreasing the ghost’s path length had a positive effect on the win ratio, as well as recording the highest scores to date. By reducing the number of penalized cells, Pacman was able to more effectively find a path through. Based on these results, I tested a feature where the further away a ghost was from Pacman, the less of his path would be taken into account. I kept the original ghost path length (5) for this.

	G. Path
	Win
	R
	O
	G
	T
	Points (Av. 5 runs)

	Variable
	4(W) 1(L)
	1
	1
	1
	1
	2510

While the win ratio stayed the same, the points suffered. Finally I tested a combination of all the best results so far, that is: increasing Pacman’s initial search grid by one (to 11x11), decreasing the ghost’s path length by one (to 4) and keeping the feature where the further away a ghost was, the less of his path would be taken into account. The results were as follows:

	Win
	Red
	Orange
	Green
	Turquoise
	Points (Av. 5 runs)

	3(W) 2(L)
	1
	1
	1
	1
	2488

The results weren’t quite what I had hoped for, so I decided to take my three most successful tests, increasing Pacman’s search grid (scenario A), reducing the size of the ghost’s path (scenario B), and the feature where the further away a ghost was from Pacman, the less of his path would be taken into account (scenario C). I ran these scenarios over twenty runs to find the most successful. The results are below:

	Scenario
	Win
	R
	O
	G
	T
	Points (Av. 20 runs)

	A
	14(W) 6(L)
	1
	1
	1
	1
	2820

	B
	12(W) 8(L)
	1
	1
	1
	1
	2615

	C
	17(W) 3(L)
	1
	1
	1
	1
	3073

As Scenario C returned the greatest win ratio, as well as average point score, I chose it as my final setup.

Analysis of Results

With my chosen setup, I ran Pacman through a series of tests to gather information on how best it could be improved. I also ran tests playing myself, to compare the AI to real-life. Each test ran 5 times to provide an average, as the tests were as follows:

· AI Controller – no ghosts present (A)

· Human Player – no ghosts present (B)

· AI Controller – red ghost, orange ghost, green ghost, and turquoise ghost individually (C, D, E, and F respectively)

· AI Controller – red and orange ghost pairing (G)

· AI Controller – green and turquoise ghost pairing (H)

· AI Controller – red and green ghost pairing (I)

· AI Controller – orange and turquoise pairing (J)

· AI Controller – red, orange, and green ghosts (K)

· AI Controller – all four ghosts present (L)

· Human Player – all four ghosts present (M)

The results of each test were as follows:

	Scenario
	Win
	R
	O
	G
	T
	Points (Av. 5 runs)

	A
	5(W) 0(L)
	0
	0
	0
	0
	2030

	B
	5(W) 0(L)
	0
	0
	0
	0
	2236

	C
	5(W) 0(L)
	1
	0
	0
	0
	2310

	D
	5(W) 0(L)
	0
	1
	0
	0
	2240

	E
	5(W) 0(L)
	0
	0
	1
	0
	2290

	F
	5(W) 0(L)
	0
	0
	0
	1
	2250

	G
	5(W) 0(L)
	1
	1
	0
	0
	2780

	H
	5(W) 0(L)
	0
	0
	1
	1
	2450

	I
	5(W) 0(L)
	1
	0
	1
	0
	2640

	J
	5(W) 0(L)
	0
	1
	0
	1
	2570

	K
	4(W) 1(L)
	1
	1
	1
	0
	2458

	L
	5(W) 0(L)
	1
	1
	1
	1
	2900

	M
	3(W) 2(L)
	1
	1
	1
	1
	3792

As you can see, the AI controller is very effective in defeating all four ghosts. While these results show a 100% win ratio, in can fluctuate as low as 60%, but in general a ratio of around 80-90% is the average. Some of the problems with the AI controller did become apparent in testing.

Currently, my controller makes no allowances for ghost colour. As apparent from the results, the red and orange ghost were more aggressive than the green and turquoise – the higher average scores were as a result of Pacman eating the ghosts, something he would only do if the ghosts were in the near vicinity. Observing the AI controller made it apparent that most of Pacman’s “near-misses” were attributed to the red and orange ghost. Changing the cell penalization heuristic to take this into account might have a beneficial effect, particularly if Pacman is about to become trapped, as he could take the path (providing that both are of equal length) leading towards the green or turquoise ghost, thus giving himself more chance of survival.

My AI controller also doesn’t take into account increased ghost speed, i.e. when they go into hunter mode. Again, a change to the penalization heuristic would allow Pacman to choose the path of the non-hunter ghost, again giving himself more chance of survival.

It is still possible for Pacman to get trapped. My AI controller can confidently beat any combination of two ghosts, as there will usually always be a path of escape, except in the case of a corridor. Three or more ghosts present the problem of blocking all of Pacman’s routes to escape (the reason for the 1 loss in scenario K). Not much can be done to combat this, as I was trapped in a similar way twice while playing (scenario M). Extending the search grid or taking the ghost behaviours in account might have a positive benefit on this. It is possible to roughly know the direction a ghost will take given a choice, as their behaviours were mapped out. Unless Pacman is already trapped, then he could head towards the ghost with the least percentage chance of taking the direct path to him, based on their behaviours. While this might result in only a small improvement, as it is based on chance rather than skill, it might make the difference between getting trapped and escaping.

It is interesting to note the points difference between scenario L and M (AI controller and four ghosts, and Human Player and four ghosts). Even though I lost twice while playing myself, my average points are nearly 1000 greater than my AI controller’s. This is the result of a combination of two strategies. The first is to not eat the power pills until absolutely necessary, and the second is to allow the ghosts to pursue Pacman until they’re all gathered near the power pill, thus allowing Pacman to eat all four ghosts and gain maximum points. However, when planning my AI controller I made points gain a low priority goal, instead going for successfully completing the game. Actively hunting the ghosts can easily backfire, and trying to eat all four is a dangerous bid, unless they are all clustered around the power pill. Often, when playing myself, the ghosts would return to the original colour when Pacman was near them, resulting in a hasty retreat. My AI controller will hunt ghosts if they are close (using the path rewarding heuristic described before), and only if it’s worth his while doing so. I have seen my AI Controller turn from pursuing a ghost if there is an alternative path where there is an ample supply of dots. I am happy to allow this, rather than adjusting the heuristic to give ghosts priority, as it puts Pacman’s safety to the foremost, while also allowing him to actively seek end game state.

One fault with my path finding heuristic is in the rare situation where there is only one dot left and a ghost will be in the path of Pacman just before he reaches it, and if the dot is in a corridor with only two points of entry/exit, with the ghost arriving at one, and Pacman arriving at the other. As the path finding function returns the path of lowest cost, and as the ghosts paths are penalized more the closer to the ghost, the path leading directly to the dot will have a lower cost than the second path to the dot, where Pacman comes from the same corridor as the ghost (the ghost will be gone from the path at this stage). Thus Pacman will take the first path even though the ghost will kill him before reaching the dot. An initial check for this scenario, before forcing Pacman onto the second path would help immensely in this situation.

Overall, I’m quite happy with my implementation. The actual code itself is pretty simple, yet very effective. There are a number of small things, as pointed out, that could be done to improve it, particularly in the situations where Pacman might get trapped. I completed all the targets and goals I had originally set out in planning, and the results were more than I had initially predicted. I would like to think of this as a simple, yet successful implementation.

