PAGE
10
Damian Connolly – 08969 – Games Programming and A.I. - Underwater RenderMonkey Coursework

Game Programming and AI – Shaders Coursework

Damian Connolly

[image: image1.jpg]
This is a write up of my underwater shaders coursework, of which all modelling, animation and effects were achieved using the RenderMonkey package. Below I have detailed all the effects that were used in creating my coursework.

Coral of various species:

In searching for some coral textures, I came across the mayang website, which has a vast number of downloadable textures, all at very high quality. I selected some relevant coral samples, and used Photoshop to resize and enhance the image. I also used Photoshop to create a black and white heightmap, and a normalmap, using the NVIDIA NormalMapFilter plugin.

[image: image2.jpg] [image: image3.jpg] [image: image4.jpg]
As I wanted to achieve a more pronounced and realistic bump, I combined each set of images using the parallax mapping technique. This technique offsets the normal, using the heightmap, to correct the view-dependent unevenness present in normal bumpmapping techniques. I used simple cubes as models for the coral.

[image: image5.jpg]
Sea Terrain:

For the sea terrain, I used the stock Terrain.3ds model supplied with RenderMonkey. I obtained a seamless sand texture from escrappers.com and augmented it with a heightmap that I created in Photoshop.

[image: image6.jpg] [image: image7.jpg]
As the sand is not going to be viewed closely, I felt that only using the sinuous-wave heightmap would be sufficient to provide texture. I also added a streaming caustic texture over the surface, which I talk about later.

[image: image8.jpg]
Animated sea life:

For the animated sea life in the sequence, I obtained models from toucan.web.infoseek.co.jp, namely the humpback whale and sandbar shark. The textures for the models were provided, which I brought into Photoshop and used to create heightmaps to add some texture.

[image: image9.png] [image: image10.png]
The actual animation of the whale and shark took a large amount of time. I started first by rotating and translating the models so their centre was at the tip of their respective noses. I then used a combination of amplitudes, frequencies, and sin waves over time, multiplied by the x position of the vertex to control the vertical or horizontal movement of each vertex, meaning that vertices at the end of the model were affected more. Some further variables were used to accurately define the starting point of movement, so the models would move realistically. I then re-translated and rotated the models back to their original centre, and through a combination of further translations achieved their movement in the world. I’m really pleased with the final results, as they are both smooth and lifelike.

(Note: for best results, the cycle time for Time0_X should be set to 60.0 seconds)

[image: image11.jpg] [image: image12.jpg]
Bubbles:

For the bubble in my scene I used the Sphere.3ds model available in RenderMonkey and used the Glass.rfx sample to help achieve the reflection. The reflection image is the Snow.dds cubemap also available in RenderMonkey. The animation of the bubble follows along the same lines as the animation for the whale and shark, albeit in a simpler form. The vertices are altered to achieve a rippling, bulging effect, and the bubble is given a final vertical motion to move it upwards. The bubbles motion is also affected by the overall sway of the ocean, a global property used by a number of the passes in my scene.

[image: image13.jpg]
Underwater Volcano:

The volcano in my scene is achieved in two passes, both of which use the QuadArray.3ds model in RenderMonkey for their particle effects. The code is adapted partly from my own experiments and partly from the ParticleSystem.rfx sample file. The shape of the particle system is defined and the particles get their colour from textures. The smoke texture was obtained from the sai.msu.su website.

[image: image14.jpg]
The animation for the smoke particles is also different in that they get bigger the longer they live, and they are also affected by the sway of the ocean, more so the further away from the volcano spout they get. Both sets of particles are blended with the background. They also receive some colour from the ocean, depending on the distance to the camera. I will talk more about this feature the Other Effects section. Unfortunately, due to the blending used on the smoke, this has a tendency to break the visual effect if the camera is moved too far out.

[image: image15.jpg] [image: image16.jpg]
Ray-traced artificial objects:

The ray traced artificial objects were created from a tutorial by Mr Li. Most of the code is in its original form, with the exception that variables not used were removed, and some changes were made to allow the removal of near-duplicate code. I also added the ocean colour blending feature described later, as well as fixing the z-depth problem, where the ray-traced objects would appear over everything, regardless of whether there were other objects in front of it or not. Help in fixing this particular problem was obtained from the gpgpu.org forums. Some additional variables were added to control object position, size, and speed.

[image: image17.jpg]
Underwater caustics:

The underwater caustics were achieved by moving a large texture across the ocean bed. The texture was put together in Photoshop and consists of an original 32 separate images, which created a looped animation. The original images were downloaded as part of a textures package from clootie.ru.

[image: image18.jpg]
The caustics texture was then mixed with the ocean bed texture to create the desired effect. The texture coordinates were modded with time and speed to control how fast they moved. The texture was also applied to some of the models, namely the whale and the shark for added effect. Light rays were also modelled to provide more realism, and these will be talked about in more detail below.

[image: image19.jpg]
Sea plants:

For the various sea plants, I created two versions, one fixed to the seabed and one floating with the tide. The models were obtained from the 3dxtra.cygad.net website, and the textures were modelled using 3D noise in a similar fashion to the Fabric.rfx sample. For the plants anchored to the seabed, I used a sin function altered by the vertex position of each object, over time to create the waving effect. They were also animated based on the ocean’s sway. For the floating plants, I again used the same type of sin function, but this time applied it to the entire model, and with a greater strength, to model the characteristics of seaweed or similar. The floating plants entire world motion is defined by the ocean’s sway.

[image: image20.jpg]
[image: image21.jpg]
Other Effects:

I used a number of effects to achieve added realism in my scene. Firstly, I added another particle system to model the various dusts and silt-like material found in the ocean. The system is spread through the entire scene, and all movement is obtained through the oceans current. I initially had this idea after watching a short documentary about the film “Finding Nemo” where they list out 5 features that combine to create a realistic underwater scene.

The second effect I used was to model the rays of sunlight coming down through the waves and created a dancing display. I used a screen-aligned quad as a model, and adapted the Night Sky effect in ScreenSpace Effects.rfx to model the light’s movement. I think the overall effect it adds to the scene is quite striking. The shader uses 3D noise and a variety of functions to create the visual lines, and uses this to blend the sunlight colour with the background ocean colour. Below you can see both effects in action.

(Note: if the sunlight effect is not visible on starting RenderMonkey, open the sunlight pass, and set the zpos variable away from 1.0, then back to 1.0. I’m not sure what’s causing this bug, it seems to be something with RenderMonkey)

[image: image22.jpg]
The second effect I used was to fade off the colour of objects depending on distance. This idea was again inspired by the “Finding Nemo” documentary. It states that as objects move further into the background, the colours begin to fade, most notably the reds and greens, and eventually definition is lost. In practise, I achieved this by combining an ocean colour with the fragment colour based on the distance to the fragment. I altered this distance using variables to allow for dynamic changing of the depth of view. The results work quite well in showing the relative depth and murkiness of the water. This unfortunately did mean that this would have to be calculated for each pass, and on hindsight I think it would have been easier to render everything to a texture, and use the depth information to augment the image.

[image: image23.jpg]
Bibliography

Coral images: http://www.mayang.com/textures/Stone/html/Other%20Stone/index.html
Terrain sand image:

http://www.escrappers.com/images/sandtexture.jpg
Fish models and textures:

http://toucan.web.infoseek.co.jp/3DCG/3ds/FishModelsE.html
Volcano smoke texture:

http://www.sai.msu.su/~megera/gimp/robinson/SmokeTexture/
Ray tracer z-depth problem:

http://www.gpgpu.org/forums/viewtopic.php?t=2096&start=0&postdays=0&postorder=asc&highlight=&sid=1747b6f4d009b4cdfdc09006452b0511
Caustics images:

http://www.clootie.ru/files/DX8SDKmedia/TexturesLobby.zip
Sea plant models:

http://www.3dxtra.cygad.net/list/599/1.htm
RenderMonkey samples consulted:

Depth of Field.rfx

Fabric.rfx

Glass.rfx

Particle System.rfx

ScreenSpace Effects.rfx

