Damian Connolly – Warehouse report – http://divillysausages.com

Warehouse Project Report

[image: image1.jpg]
Damian Connolly

http://divillysausages.com

Table of Contents

4Introduction

5Design

6Class Diagram

7Class Diagram

8Class Roles & Responsibilities

9ACW Class : public App

10BoundingBox Class

12BulletHole Class : public Object

13BulletLine Class : public Object

14Camera Class

15Color Class

16Cuboid Class

17Cylinder Class

18Gun Class : public PhysicsObject

19Light Class : public Object

20Materials Class

21MySphere Class

22Object Class

23ObjectMeshManager Class

25Particle Class

26ParticleEngine Class : public Object

27ParticleManager Class

28PhysicsIF Class

29PhysicsObject Class : public Object, public PhysicsIF

31Pipe Class : public PhysicsObject

32Plane Class

33Player Class : public PhysicsObject

35SecurityCamera Class : public Object

37Skybox Class : public Object

38SolidBlockObject : public PhysicsObject

39TextureManager Class

41Vector3d Class

42Vector4f class

43View Class : public GLWindowEx

45Window Class : public PhysicsObject

46Interaction Diagrams

47Player/Object Collision Detection

48Bullet/Object Collision Detection

49Object Texture Request

50SecurityCamera Capture Feed

51Design Critique

52Design Critique

54Graphics

55Algorithms Document & Critique

59Project Management

60Project Management

61Self-Assessment of Design & Software

62Appendix

63Additional Code Samples

66Early UML Design Evolution

68Level Concept Images

70Level Plans

Introduction

This is the project report for my ACW report. It’s split into three general sections: Design, Graphics, and Project Management. In the Design section I present my class diagram, textual description of each class, interaction diagrams for some components of the project, and finally a critique on the design itself.

In the Graphics section I present and critique some of the algorithms used in the project. In the Project Management section I present my views on how the project went overall, including lessons learned, and things to avoid in the future.

Finally, I have included an appendix where I have included some additional code samples, some early UML design evolutions, level concept images courtesy of Google SketchUp, and the level plans I used in building the game world.

Design

Class Diagram

Class Diagram

[image: image2.png]
Class Roles & Responsibilities

ACW Class : public App

[image: image3.png]
Roles & Responsibilities:

Inherits from GXBase::App and holds the View class.

BoundingBox Class

[image: image4.png]
Roles & Responsibilities:

Each PhysicsObject in the game has an associated BoundingBox that acts as a holder for its physical representation in the world. Using the BoundingBox, most of the physics calculations, such as hit-testing and collision detection become simpler. The BoundingBox holds the width, height and depth of the object it belongs to, as well as a point and a normal on each face (for line/plane collision detection). It’s also responsible for drawing itself if required. Collision detection between the player and objects works by comparing the upper and lower bounds of each axis to see if two boxes are intersecting. This allows for easy player placement when a collision is detected. For example, if the player collides with the positive X-axis side of an object’s BoundingBox, then stop his travel in the X-axis at that point, while still allowing sideways movement.

BulletHole Class : public Object

[image: image5.png]
Roles & Responsibilities:

A BulletHole object comes into being when the player shoots an object in the game world. It’s update() function is called before it’s draw function to allow the BulletHole to fade (achieved by changing it’s Material alpha property and using glBlendFunc() before drawing). GlDepthMask(GL_FALSE) is used so create a temporary depth mask around the BulletHole when it’s drawn so there’s no z-buffer contention with other BulletHoles. When it’s created, it’s passed a center and a normal Vector3d, which are used to determine the alignment of the bullet hole. It’s texture is loaded in as an 8-bit alpha mask, and it also contains a function to determine if it is still visible and should still be drawn, or removed. The read() function isn’t used but is needed to instantiate the object as it’s pure virtual (from Object).

BulletLine Class : public Object

[image: image6.png]
Roles & Responsibilities:

Similar in many respects to the BulletHole class, the BulletLine comes into being when the player shoots, irrespective of whether he hits anything or not. Its main role is to provide a visual clue to the player of the shot they just made. When it’s created, it gets passed a start position and an end position Vector3d, with which it draws itself. It also contains a function to fade itself over time, and to determine if it’s still visible or not. The read() function isn’t used but is needed to instantiate the object as it’s pure virtual (from Object).

Camera Class

[image: image7.png]
Roles & Responsibilities:

The Camera class is used in a number of places; as the player’s eye view, and in each security camera in the level. It contains methods to set the camera shape up (the field of view, aspect ratio, near depth and far depth), as well as its position and lookAt (the Camera class uses gluLookAt() to set the display matrix). As the mouse controls the player’s view, it also contains methods to generate the matrix from the x-angle and y-angle passed in. The final method calcNextMove() is used by the player for the physics calculations that occur when moving, returning the next potential position.

Color Class

[image: image8.png]
Roles & Responsibilities:

The Color class is mainly used in the creation of Materials for objects. It contains stock methods for quickly creating common colors, as well as operator overloading to quickly access specific parts of the color itself. The write() function is used when the game is dumped to a log, and allows it to quickly write out it’s values in a form easily read back in by the parser.

Cuboid Class

[image: image9.png]
Roles & Responsibilities:

The Cuboid class is used in any class that requires a box shape physical object. It holds six Plane objects - one for each face, and also stores the GLuint texture number for each face, allowing each one to be textured differently. The buildCuboid() method is responsible for rotating each Plane face and calling the Plane::draw() method on each one. For ease of level design, I have decided to take the registration point for each Cuboid as its bottom left-hand corner, meaning vertically stacked objects of differing sizes would have the same X and Z values for their position. The create() method for the Cuboid sets up each of its six Planes, passing it a width, height, texture number, and a Boolean to flag whether to repeat the texture or not. For more information, see the Plane class explanation.

Cylinder Class

[image: image10.png]
Roles & Responsibilities:

The Cylinder class is used by the Pipe class as it’s physical representation in the game world. It uses gluCylinder() to draw itself.

Gun Class : public PhysicsObject

[image: image11.png]
Roles & Responsibilities:

The Gun class is used in the game world to allow the player to shoot objects. It holds its total number of bullets left, and how far it can shoot (_fFarPlane). When fired, it receives the bullet’s direction Vector3d from the View class. It passes this Vector3d, the gun’s position Vector3d and two empty Vector3d’s to store the hit position and hit normal should a collision with a game object occur. The Gun is also responsible for creating a new BulletLine (from the stack), and passing it to the ObjectMeshManager to manage. The draw() and read() methods are not used but are required to instantiate the object as it’s pure virtual (from Object).

Light Class : public Object

[image: image12.png]
Roles & Responsibilities:

The Light class is responsible for the lighting in the game, providing color and atmosphere. It contains methods to easily set itself up, including using the Color class to set it’s _ambient and _diffuse properties. The read() and write() methods are used to stream in and stream out from and to files respectively. While reading in, the Light decides whether it’s a spotlight or a directional light. In the former case, the setSpotlightVars() method comes into play. It also contains operator overloading to quickly access specific parts of its _position Vector4f.

Materials Class

[image: image13.png]
Roles & Responsibilities:

The Materials class is used to give each drawn world object its base color. It’s also used to provide alpha blending for objects that require it (e.g. the Window class, and the BulletHole class). This can be achieved two ways, constantly using alphaDiffuse(), or once using setAlpha(). The alpha value is capped between 0.0f and 1.0f. The class also contains a method that returns whether the Material is still visible or not.

MySphere Class

[image: image14.png]
Roles & Responsibilities:

The MySphere class is used by the SecurityCamera class as it’s physical representation in the game world. When it’s first created, it creates the points, normals, indices, and texture coordinate arrays used to build the sphere. It then calls the makeDisplayList() method which creates a display list for drawing the sphere, helping the game run smoother and quicker. It holds the returned GLuint in it’s _dlSphere property, allowing the draw() method to simply call the relevant list.

Object Class

[image: image15.png]
Roles & Responsibilities:

The Object class is the main parent class for a lot of the other classes in the project. It contains a number of virtual and pure virtual functions, including read(), write() and draw(). It also contains a _position Vector3d to hold the world position of each object, as well as quick methods (xPos(), yPos(), and zPos()) for accessing the particular properties of its _position. The Object class also interacts with the TextureManager class. Each Object has a _sTextureName string to store its texture name, as well as an _iTextureNumber GLuint to store the returned number. The getTexture() method is used by objects on startup to request their textureNumber from the TextureManager (see the TextureManager class description for more information). Each object also has a _sID string that it reads in from the environment text file, which allows each object to be easily identified by a unique (or type) name. For example, the SolidBlockObject uses this property to determine what to write out to file when the game is dumped to a log file.

ObjectMeshManager Class

[image: image16.png]
Roles & Responsibilities:

The ObjectMeshManager class is the controller class for all the objects that appear in the game world. It’s a static class, only one instance of it can exist at any one time, thus all access to it is restricted to the ObjectMeshManger::get() class method (the gang-of-three being privatized to stop accidental creation or otherwise). It contains four <vector> arrays, one for all Objects, one for all PhysicsObjects (easier for physics calculations etc), one for SecurityCamera objects (making them easier to operate), and one for non-static Objects (BulletHoles, BulletLines etc.). When the environment text file is being read in, the stream is passed to the ObjectMeshManager, which reads in the type of object about to be created, creates a basic one, and then passes the read stream to that object so it can instantiate itself. After each object is finished it’s added to the _oAllObjects <vector> array, and some dynamic_cast<> operations are performed on the object’s pointer to determine if it needs to go into the _oAllPhyObjects or _oAllSecurityCameras arrays as well. The ObjectMeshManager also controls the drawing of each object, getting each object to write out its properties when a dump is called for, and it’s safe deletion once the game ends. The getNextSecurityCamera() method is used by the View class to cycle through each SecurityCamera and capture its feed. For more information on this, see the View class and the SecurityCamera class descriptions. The View class also controls the creation and deletion of the ObjectMeshManager.

Particle Class

[image: image17.png]
Roles & Responsibilities:

The Particle class is used to display steam in the game, after the player shoots a steam-pipe. It controls its own movement and lifecycle. In the update() method, the Particle fades itself based on its current age against its lifespan. It also grows in size, to give the appearance of steam escaping at high pressure. In the draw() method, the Particle grabs the current modelview matrix and changes the 3x3 rotation matrix so that it’s always facing the player. This allows for fewer particles to be used while still achieving an effective volumetric-like effect. While the Particle generates texture coordinates, the binding of the texture occurs with the ParticleEngine. For more information, see the ParticleEngine class description.

ParticleEngine Class : public Object

[image: image18.png]
Roles & Responsibilities:

The ParticleEngine class controls the release, velocity and resetting of the Particles that it controls. When the ParticleEngine is created it uses operator new() to grab enough memory for the amount of particles allocated to it by the ParticleManager (see the ParticleManager class description for more information). It then uses the memory allocated to create each Particle and add it to its _particles <vector> array. In the update() method, the ParticleEngine releases some more particles, if it hasn’t yet reached its limit, as well as checking the released Particles to see if any are dead, in which case it resets them using resetParticle(). The getRandomNumber() method is used by setParticleVelocity() to give some randomness to the particles velocity, which is based on the _direction Vector3d of the ParticleEngine. In the draw() method, alpha blending is achieved using glBlendFunc() and the texture to be applied to each Particle is set. The Particle is then updated and drawn. GlDepthMask(GL_FALSE) is used to create a temporary depth mask around the Particle so there’s no z-buffer contention with other Particles.

ParticleManager Class

[image: image19.png]
Roles & Responsibilities:

The ParticleManager class is the controller class for all the ParticleEngines that appear in the game world. It’s a static class, only one instance of it can exist at any one time, thus all access to it is restricted to the ParticleManager::get() class method (the gang-of-three being privatized to stop accidental creation or otherwise). It’s created by the View class on startup and passed the read stream from the environment text file so it can read in the maximum number of ParticleEngines, as well as the number of Particles per engine. When addParticleEngine() is called, the ParticleManager first checks to see if the maximum number of engines has been reached. If it hasn’t, then it creates a ParticleEngine and adds it to the _pEngines <vector> array. If it has, then it takes the oldest current ParticleEngine and moves it (the next one to be moved being the next in line). DrawParticleEngines() gets called from the View class, wherein the ParticleManager goes through it’s list of created ParticleEngines and updates, then draws them. The View class also handles the destruction of the ParticleManager.

PhysicsIF Class

[image: image20.png]
Roles & Responsibilities:

The PhysicsIF class is an interface class that PhysicsObject inherits from. It contains the functions used in collision detection for both the player and the bullet from the player’s gun. The method getNextTrueMove() is used by the player to find his next position. It gets passed the potential eye position from the player’s Camera object (see Camera class description for more on this). It uses this Vector3d to determine if the player’s BoundingBox is intersecting with any of the game world object’s BoundingBox (via the ObjectMeshManager), adjusting the final position returned accordingly. If the player collides with an object that he can step on (see Player class description for more on this), then the eye Vector3d is moved up accordingly. If no collision is detected, then it returns the unchanged eye Vector3d so the player can update his position. The method checkBulletCollision() is called when the player shoots his gun. When this happens, PhysicsIF checks the bullet Vector3d with each object in the game world. In the case of the object being a pipe, the collision algorithm used is cylinder/line. Otherwise it uses plane/line collision detection to first see if the bullet Vector3d intersects the planes of the object’s BoundingBox. If this is the case, it then checks to see if the collision occurs within the BoundingBox area using checkPointInsideBox(). PhysicsIF then updates the hitPos and hitNormal Vector3d’s with the nearest collision point and normal respectively, before returning a positive hit. The PhysicsIF class is also responsible for calling the onShot() method of the PhysicsObject hit.

PhysicsObject Class : public Object, public PhysicsIF

[image: image21.png]
Roles & Responsibilities:

The PhysicsObject class is a parent class for objects that need a physical presence in the game world, i.e. they can be collided/interacted with. Inheriting from both the Object and PhysicsIF class, the PhysicsObject mainly concerns itself with the setup and operation of the BoundingBox for each object. As such, a large number of its functions are to facilitate use of the BoundingBox in physics calculations. The PhysicsObject also has width, height, and depth (_fWidth, _fHeight, and _fDepth) properties, as well as methods to get and set them. It also contains the virtual functions onShot() and isBroken(). OnShot() is called when the object in question has been hit with a bullet from the player’s gun (called from the PhysicsIF function checkBulletCollision()), while isBroken() applies to Window objects only, to determine if it has previously been shot (see the Window class description for more on this).

Pipe Class : public PhysicsObject

[image: image22.png]
Roles & Responsibilities

The Pipe class is used to represent the steam-pipes that appear in the game world. It holds a Vector3d direction for its axis as well as one for its position (inherited from Object). It also contains a Cylinder object, which it sets up after it has read in its properties from the environment text file. The _fRotateAngle, _fRotateX, _fRotateY, and _fRotateZ properties are used to rotate the Cylinder object into the same position defined by the Pipe’s axis. When a Pipe gets shot, the onShot() method is called, in which it interacts with the ParticleManager to create a ParticleEngine at the point of contact. The hitNormal Vector3d (the normal at the point of collision) is also passed to the onShot() method, and this becomes the ParticleEngine’s direction.

Plane Class

[image: image23.png]
Roles & Responsibilities:

The Plane class is used by the Cuboid class to easily build faces of a cube. When first created, the createArrays() method is called, which creates the vertex, normal, index, and texture coordinate arrays. The create() method, which calls createArrays(), is also passed a bool, which determines if the texture on the Plane should repeat or not. If this is set to true, then the Plane will generate more texture coordinates so the texture will tile across it. Next, makeDisplayList() is called which creates a display list for drawing the Plane, helping the game run smoother and quicker. It holds the returned GLuint in it’s _dlPlane property, allowing the draw() method to simply call the relevant list.

Player Class : public PhysicsObject

[image: image24.png]
Roles & Responsibilities:

The Player class is the main class, behind the View class, in the game. Controlled via keyboard and mouse input received from the View class, the Player object is the user’s method of interacting with the game world. It holds a Camera object, which is used to calculate the modelview matrix used to display the world. The settings for this are streamed in from the environment text file, and passed along to the Camera object, via the setupCamera() method, so it can set itself up (see the Camera class description for more on this). The resulting matrix is obtained by calling the showView() method. When the player receives keyboard input to move, it calls the getNextTrueMove() method (inherited from PhysicsIF), passing along the next camera position calculated using Camera::getNextMove(). The returned Vector3d position from getNextTrueMove() is passed to the updatePlayer() method, which moves the player’s Camera, position, Gun, and BoundingBox. UpdatePlayer() also calls the setEyeAndCenter() method, which updates the players _eye and _center Vector3d’s. If the player is above floor level, the applyGravity() method is also called. The turn() method updates the player’s Camera based on the X and Y angle of the mouse, as passed in by the View class (for more information, see the View class description).

A number of methods facilitate interaction using the player’s Gun, namely setIsShooting(), getBulletsLeft() and shoot(). Shoot() passes in the bullet direction Vector3d, as received from the View class.

Also included are methods to get and set the player’s _fStepHeight property; the height up to which the player can step up onto objects collided with.

SecurityCamera Class : public Object

[image: image25.png]
Roles & Responsibilities:

The SecurityCamera class is used in the game to create security cameras that track the player’s moves. It holds a Camera object, which is used to calculate the modelview matrix used to display the world when the SecurityCamera is capturing the scene. The settings for this are streamed in from the environment text file, and passed along to the Camera object, via the setupCamera() method, so it can set itself up (see the Camera class description for more information on this). The resulting matrix is obtained by calling the showView() method. The SecurityCamera also holds a GXBase::Image object, which it uses to capture the screen. The capturing is achieved in the capture() method, which uses the Image object to capture the current viewport (this is resized by the View class using the getTexSize() method, which returns the size of the image we want to capture, so it can be done relatively quickly). Then, based on the amount of interference set in the environment file, it goes through each pixel of the saved Image giving it a random number between 0.0f and 1.0f. If this number is below the level of interference set, then the rgb values of that pixel get altered to simulate interference. The resulting Image is then sent off to the TextureManager, along with the id string (_sID, inherited from Object) of the SecurityCamera, to be saved as a texture. Any object requesting a texture with the id of a particular SecurityCamera instead of a normal image, will display the feed from that camera on the calling face. This allows any object in the game world to act as a monitor for a particular SecurityCamera feed. Only one SecurityCamera captures the scene at any one time, to save on framerate. The cameras are chosen by the ObjectMeshManager, and capture() is called from the View class.

Skybox Class : public Object

[image: image26.png]
Roles & Responsibilities:

The Skybox class is very similar to the Cuboid class with the exception that it has some added functionality, and the planes are positioned so they point inwards. The Skybox also gets its properties from the environment text file, which the Cuboid class doesn’t. It inherits a position Vector3d from the Object class, and is used to encompass the game world to give a sense of an outside scope. See the Cuboid class description for more information on the construction of the Skybox object.

SolidBlockObject : public PhysicsObject

[image: image27.png]
Roles & Responsibilities:

The SolidBlockObject class is used to represent the vast majority of in-game objects, including stairs, pillars, wall-sections, monitors and platforms. It holds a Cuboid object, which is its physical representation in the world. When creating its Cuboid, it passes it width, height and depth, as well as GLuint texture numbers for each of the faces (received by calling getTexture(), inherited from Object). It also passes a bool that determines if the textures on the Cuboid are repeated or not (monitors, for example, are set to false). The onShot() method, which gets called when the SolidBlockObject is hit with a bullet from the player’s gun, is responsible for creating a new BulletHole (from the stack) and passing it to the ObjectMeshManager to manage. The _type string attribute is used to determine what to write out when the game file is being dumped to a log. A SolidBlockObject that’s representing a stair will hold “Stair” as its type, while one representing a pillar holds “Pillar”.

TextureManager Class

[image: image28.png]
Roles & Responsibilities:

The TextureManager class is the controller class for all the textures that are used in the game world. It’s a static class, only one instance of it can exist at any one time, thus all access to it is restricted to the TextureManager::get() class method (the gang-of-three being privatized to stop accidental creation or otherwise). Any object that requires a texture makes a request for it via the getTexture() method, passing along the name of the texture (for example “map.bmp”) and a bool that sets whether the image is an alpha mask or not.

The TextureManager calls the searchLoaded() method to search through the _texturesLoaded <map> container to see if it’s already been loaded in. If it has, then the matching GLuint number is passed back to the requesting object. Otherwise, the TextureManager calls the create() method if it’s a normal image, or the createAlphaMask() method if it’s an alpha mask image.

In the create() method, the TextureManager uses its GXBase::Image object to load the image, bind the texture and build the mipmaps. It then frees the Image resource, and enters the name of the loaded texture and the returned GLuint texture number into the _texturesLoaded <map> container. The createAlphaMask() method works in the same way, with the exception that it changes the image format to 8-bit alpha, and alters how the texture is to be accessed (no mipmaps – the alpha mask is used to modulate the underlying Material of the object). After the texture has been created, the GLuint texture number is returned to the requesting object.

The TextureManager also controls the saving of the SecurityCamera feeds to their respective textures. The TextureManager receives the SecurityCamera’s Image object, and it’s id. It calls the searchLoaded() method to see if the SecurityCamera has created a texture before. If it hasn’t then it creates one in the same way as the create() method. If it has, then it rebinds the new captured image to the texture. In this way, any object that makes a request for a texture using the id of a SecurityCamera will receive the feed from that camera as it’s texture, turning any game object into a potential monitor.

Vector3d Class

[image: image29.png]
Roles & Responsibilities:

The Vector3d class is used by all classes, usually in the form of a position vector. It contains a number of methods used in maths and physics calculations such as collision detection. It also contains a number of operator-overloaded methods to facilitate easy mathematical operations. Finally, it also has a set of read() and write() methods to facilitate easy streaming in and out from files.

Vector4f class

[image: image30.png]
Roles & Responsibilities:

The Vector4f class is used for position Light objects. The additional matrix position is used in homogeneous calculations, as well as setting if a light is taken as a direction light or a global light during lighting calculations. Specifying the w section of the matrix as 1.0f would result in a spotlight, whereas 0.0f would result in global illumination.

View Class : public GLWindowEx

[image: image31.png]
Roles & Responsibilities:

The View class is the main class in the game. It starts and ends the simulation. It creates the Player object and streams in the data from the environment text file (using the parseData() method) before passing it first to the player, then to the ObjectMeshManager (see the ObjectMeshManger class description for more on this). The scene rendering occurs in the OnDisplay() method. The View class first calls on the ObjectMeshManager to pass it the current SecurityCamera (a different one being chosen every frame). It resizes the viewport based on the SecurityCamera’s settings and loads the modelview matrix based on the SecurityCamera’s perspective, before rendering the scene by calling the renderScene() method (see the SecurityCamera class description for more on this). This method applies a basic material to everything, then draws the player, calls on the ObjectMeshManager to draw each object, then calls on the ParticleManager to draw any ParticleEngines running. When asking the ObjectMeshManager to draw the game objects, the View class passes it the _bBoundingBox bool, which determines if each object’s BoundingBox is drawn as well. After the SecurityCamera has captured the scene, the View class resizes the viewport back to normal, before rendering the scene again using the matrix obtained from the Player (see the Player class description for more on this).

The View class also contains other bool values that determine the current display of the game, including _bFullscreen for fullscreen, _bWireframe for wireframe mode, _bGourand for gourand only shading, and _bBulletTime for enabling/disabling bullet-time.

The View class also controls the player movement. In the OnKeyboard() method, when the ‘a’ key is pressed the player is allowed to move forward based on where he is currently looking. When the ‘a’ key is released the player is no longer allowed to move.

If the user presses the left mouse button, the mouse Vector3d is grabbed using getMouseVector(). This method works by getting the viewport, modelview matrix, and projection matrix details. It then uses gluUnProject() on the player’s near view plane with the mouse X and Y coordinates to get the near point, and the same again using the player’s far view plane to get the far point. Subtracting the two Vector3d’s give us the bullet direction based on the mouse position. This direction Vector3d is passed to the player so he can shoot (see the Player class description for more on this).

The View class also contains a method for dumping the current state of the game to an external log file. The writeData() method will write out the View class’ properties, before calling on the player and then the ObjectMeshManger to do the same (the ObjectMeshManger calls on it’s managed object to write out their data). The format of this dump is such that it can immediately be read back in as the environment file, acting almost as a stop-gap save system.

Window Class : public PhysicsObject

[image: image32.png]
Roles & Responsibilities:

The Window class is very similar to the SolidBlockObject class with the exception that it has two Cuboid objects and only two textures: one unbroken texture and one broken texture. See the SolidBlockObject class description for more on the setting up of the Cuboids. When a window starts out, only the _unBrokenWindow Cuboid is drawn. The onShot() method sets the _bIsBroken bool to true, which causes the _brokenWindow Cuboid to be drawn. The reason there’s two Cuboids it that the Plane objects inside the Cuboid are drawn using a displayList, so a change of texture is impossible. The Window object is also responsible for its own streaming in and streaming out to file, with the read() and write() methods.

Interaction Diagrams

Player/Object Collision Detection

[image: image33.png]
Bullet/Object Collision Detection

[image: image34.png]
Object Texture Request

[image: image35.png]
SecurityCamera Capture Feed

[image: image36.png]
Design Critique

Design Critique

The design for this ACW, while not as extensive as originally planned, has given me a great insight into planning large-scale projects. Certain items of the design worked well, while others fell short and lead to delays and complications during coding. Overall, what worked the best were the different manager classes, and the BoundingBox class. The BoundingBox class made it extremely simple to detect collisions between the player and game objects. For this project I put a restriction in that the objects had to be axis-aligned, but the BoundingBox class can easily be extended to cater for non axis-aligned/non-cubic shaped object, for example, by using a simple BoundingBox algorithm to determine if the player is within the object’s boundaries, before switching to a more complex algorithm for exact collision detection. The TextureManager class also worked extremely well, removing the need to repeatedly load the same texture image. Objects in the game world simply had to make a call for the image required and the TextureManager would load it in if necessary. This approach also worked well in conjunction with the SecurityCamera class, in capturing the viewport and saving to a texture. Again, this class could be extended to deal with 3D textures or shaders.

What didn’t work so well was the separation of different types of objects, especially when it came to physics calculations. Dynamic casts were used in parts to determine what sort of algorithm to use, rather than virtual functions or similar. The main mistake I made was taking the PhysicsIF class as a separate object rather than something each object automatically had through inheritance. More abstraction could have been employed to group similar classes, for example, the SolidBlockObject class and the Skybox class. Also, the View class in the ACW had a large degree of control over the game, and thus had to interact with a number of classes that could have been better separated for looser coupling.

The original UML design for my ACW has changed significantly, mainly to do similar classes being grouped (Floor and Wall into SolidBlockObject), necessities in the code that required classes to be moved around (in particular when it came to the physics), certain classes being dropped due to time constraints (for example, the Particle class is used for steam, rather than as a general particle), and other being added (the ParticleManager class for one).

In the course of this ACW, I learned a lot about how classes fit together and how best to use inheritance. My main problem when tackling this project was that I had never undertaken anything like it before (including the language), and so I didn’t know simple things that more experienced planners would automatically have avoided. I will also put more effort into the initial planning stages of my projects to come, as many problems that I encountered could have been avoided if they had have spotted at the planning stage.

Graphics

Algorithms Document & Critique

In this section, I will detail some of the algorithms used in my project, including how the transparency effects were achieved (for example, on the windows and bullet holes), how the broken glass effect was achieved on the windows, and my algorithm for detecting that the window has been hit with a bullet.

Transparency

Transparency on objects such as Windows and BulletHoles was achieved using a combination of a Material with diffuse opacity under 1.0f and using the glBlendFunc() when rendering. It’s important that objects that are using transparency are rendered after other objects in the scene, as the colours in the object Material blend with the colours already in the colour buffer. When the object is being set up, it declares its Material thus:

_material.create(Color::black(), Color(0.0f,0.0f,0.4f,0.3f));

The second Color declaration controls the diffuse colour of the material. In this declaration (for the Window class), a dark blue transparent colour is being defined (in rgba terms). The class could also define the second Color as Color(0.0f,0.0f,0.4f,1.0f) and use the Materials::alphaDiffuse() or Materials::setAlpha() functions in the Materials class to set the alpha. The setAlpha() function is included below. The _diffuse variable that is being referred to is the diffuse Color object held in the Materials object.

void Materials::setAlpha(const float value) {

if(value < 0.0f)

_diffuse[3] = 0.0f;

else if(value > 1.0f)

_diffuse[3] = 1.0f;

else

_diffuse[3] = value;

}
The blending of the object with objects in the background occurs during drawing. A call to glBlendFunc() is made. A number of different parameters are used to control how the element is blended. I have used glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA), which blends the colour of the object in question with the colour already in the colour buffer. The draw() function then looks like this:

glEnable(GL_BLEND); // enable blending

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // define how it’s going to blend with what’s in the color buffer

_material.apply();// apply the object’s material

glBegin(GL_LINES);

// drawing code goes here

glEnd();

glDisable(GL_BLEND);// disable blending

The BulletHole class also uses an 8bit alpha mask as a texture, to further enhance transparency, and allow decal effects to be applies to the surrounding objects.

The Broken Glass Effect

The Window class has two Cuboid objects inside (see the Window class description in Design: Class Roles & Responsibilities for more on this and how it’s set up). As the Plane objects that the Cuboid uses to build itself are drawn via displayLists, it means that dynamic texture swapping wouldn’t have been possible. Thus the Window class has two Cuboids, one with an unbroken texture applied to it, and one with a broken texture applied. The Window class also contains a bool that determines which Cuboid to draw. When the Window gets hit by a player’s bullet, it’s onShot() method is invoked which sets the window broken bool to true.

void onShot(Vector3d &, Vector3d &) { _bIsBroken = true; };

Then, in the draw() method, a simple check is performed to see which Cuboid to draw.

if(!_bIsBroken) _unBrokenWindow.draw();

else _brokenWindow.draw();

While this method does have it’s drawbacks – twice the geometry is required – it is an extremely simple method to implement. In future, I don’t see myself choosing this method again, as not only does dynamic texture swapping take less resources, it leaves more options open, such as night-vision, where a “night-vision texture” could be swapped with the current one to give the impression of a visual change.

Bullet Collision Detection

The algorithm used for detecting that a bullet has hit a Window object is the same algorithm used for the majority of the objects in the game. When the user presses the mouse button, a call to the Player::shoot() method is made. The bullet direction Vector3d is calculated by using gluUnProject() to reverse the projection and modelview matricies to find out the Vector3d that the mouse is over. See the appendix for more information on this algorithm.

The Player object calls on its Gun object to shoot, passing it the mouse Vector3d. The Gun object calls the checkBulletCollision() method in the PhysicsIF class, passing amongst other variable, two empty Vector3d’s to store the position and normal of the bullet collision point if a collision occurs.

In the checkBulletCollision() method, each game object is cycled through and a check to see if it’s a pipe (cylindrical object) occurs, in which case the checkBulletCylinder() method is called. See the appendix for more information on this algorithm.

bool PhysicsIF::checkBulletCollision(const Gun *ptGun, const Vector3d &gunPos, const Vector3d &bulletDir, Vector3d &hitPos, Vector3d &hitNormal){

// set up some variable used in the algorithm

// run through the physicsObjects

for (pIter envObj = ObjectMeshManager::get()->oAllPhyObjects().begin(); envObj!=ObjectMeshManager::get()->oAllPhyObjects().end(); envObj++){

if((*envObj)->getID() == "pipe"){

// do pipe collision

}

The algorithm used is plane/line collision, for which we need a point and a normal on the plane. Each PhysicsObject has a BoundingBox object which holds this information for us. We retrieve the normal and point Vector3ds and hold them in two arrays to make life easier.

else{

// hold the normal vector3ds

const Vector3d * pNormals[6] = {(*envObj)->getMinusXNormal(), (*envObj)->getMinusYNormal(), (*envObj)->getMinusZNormal(),(*envObj)->getPlusXNormal(), (*envObj)->getPlusYNormal(), (*envObj)->getPlusZNormal()};

// hold the point vector3ds

const Vector3d * pPoints[6] = {(*envObj)->getMinusXPoint(), (*envObj)->getMinusYPoint(), (*envObj)->getMinusZPoint(), envObj)->getPlusXPoint(), (*envObj)->getPlusYPoint(), (*envObj)->getPlusZPoint()};

We now loop through the six planes that make up the BoundingBox on each object. As we’re working with infinite planes, we first check to see that the bullet direction Vector3d is not parallel to the plane, in which case a collision will never occur.

for(int side=0; side < 6; side ++){

double dotProduct = bulletDir.Dot(*pNormals[side]); // dot product between plane normal and ray direction

// determine if ray is parallel to plane

if ((dotProduct < NEAR_ZERO) && (dotProduct > -NEAR_ZERO)) continue;

We then find the time until collision, i.e. when the bullet is fired when will it hit the plane. If the collision occurs behind the bullet’s start point, then we disregard it.

lamda = (pNormals[side]->Dot(*pPoints[side] - gunPos))/dotProduct;// find dist to collision

if (lamda < -NEAR_ZERO) continue; // determine if collision is behind start point

After finding the collision lamda time, we put that into the equation of a line to find the point at which it collides on the plane. We then see if this point is inside the BoundingBox area by calling the checkPointInsideBox() method. See the appendix for more information on this algorithm.

Vector3d pointOnRay = gunPos + (bulletDir * lamda); // get the point where it intersects plane

//check to see if the point is inside the object bounding box, and not on it's 'infinite' plane

if(checkPointInsideBox(*envObj, pointOnRay) && !(*envObj)->isBroken()){

Now that we have a positive collision, we check the time against the currently held time. If it’s less than, then the collision with that Plane occurs before the stored one. We update the hit position and normal using the information from the BoundingBox and continue iterating through the game objects until we end up with the nearest final collision.

if(lamda < dist){ // if this is a nearer collision than the previous one

dist = lamda; // hold the distance

hitPos.set(pointOnRay); // store the hit position

hitNormal.set(*pNormals[side]); // store the normals

hitObj = *envObj;

hit = true;

}

If we have hit something, then we call the onShot() method on the object in question (The Window object sets its _bIsBroken bool to true), and return from the function.

//call onShot()

if(hit) hitObj->onShot(hitPos, hitNormal);

return hit ? true : false;

Project Management

Project Management

The main lessons I learned during this project were to start earlier and plan more. As I had never coded in C++ before, or undertaken a project of this size, I didn’t know some of the simple things to be avoided. As such, problems arose during development that shifted my schedule, meaning that I was always behind time. While I did get a lot of the items implemented that I wanted to, I had to drop others, such as shadows, due to timing constraints. Better planning in future, as well as the experience I gained on this project, will help identify potential problems and make solutions easier to implement. Often I found myself rewriting classes in order to fix problems that could have easily been avoided.

I also spent a lot of time at the start of the project experimenting with different techniques and getting key components of my project working. While this time was invaluable, a tighter deadline on experimentation, or a more flexible schedule that would allow for such, would have worked out better.

One element of my project management that worked out well was the level design. Quick sketches on paper, followed by a rough mock-up in 3D using the free Google SketchUp (http://sketchup.google.com), and finally a scale drawing to graph paper, allowed me to easily design and model my level. Exact coordinates for each object in my level were easily obtained and this meant that a basic version of my level was up and running in a few hours.

I also spent a large percentage of my time commenting my code. This made it very easy to quickly scan over functions written weeks previously and understand their functionality. It has also proven useful when I revisited my project over the Christmas break. While this did take up a lot of time, especially when time was at a premium towards the end of the project, it is not a feature I would let slip.

Another small but useful procedure I followed was to create a completely separate version of my project at the end of every day, meaning that if major problems arose, I could simply revert to the most recent version and so save time otherwise spent on impossible bug-hunting.

Self-Assessment of Design & Software

In my opinion the design of this project is simple yet effective. Undoubtedly many parts of it could stand for improvement, yet a lot of the classes used can be reused and extended. Some of the classes used, however, could be further abstracted, and common classes grouped. Not only would this help bring the amount of coding down, it would further reduce the problem of coupling that occurs in parts. Throughout the project I have endeavoured to keep my code legible and thoroughly commented and clear, and in this respect I think I have succeeded.

In terms of code implementation, I feel as though I have reasonably efficient in my execution. The BoundingBox algorithms in particular, enable me to have level-wide collision detection that runs smoothly. Again, this area can be improved though, using specialised selection of objects to check against, for example. I have used both the Visual Leak Detector and CodeAnalyst to ensure that my code doesn’t run into memory management or inefficiency issues.

One area that I hope to improve in is in coding time-independent physics. Currently, my collision algorithms only take into account the current frame, meaning that if a low frame rate occurs, it is possible that collisions can be missed, or for the player to walk through objects.

Overall, there are many areas where I hope to improve, and this project has been an invaluable experience in helping me achieve my goals.

Appendix

Additional Code Samples

Finding the mouse Vector3d

This algorithm is used when the player shoots his gun. A Vector3d direction needs to be generated in order to fire a bullet. By using gluUnProject(), I reversed the projection matrix, to turn a XY screen coordinate into a XYZ world coordinate. This function is used in the View class.

Vector3d View::getMouseVector(){

Vector3d nearTemp; // temp vector for the near plane

Vector3d farTemp; // temp vector for the far plane

GLdouble modelMatrix[16]; // temp array to hold the model matrix

GLdouble projMatrix[16]; // temp array to hold the projectionmatrix

GLint viewport[4]; // temp array to hold the viewport details

// get the modelMatrix

glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);
// get the projection matrix

glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);

glGetIntegerv(GL_VIEWPORT, viewport); // get the viewport details

// call gluUnProject on the near plane

gluUnProject(_iMousex, _iMousey, 0.1,

 modelMatrix, projMatrix, viewport,

 &nearTemp._x, &nearTemp._y, &nearTemp._z);

// call gluUnProject on the far plane

gluUnProject(_iMousex, _iMousey, _player.getFarPlane(),

 modelMatrix, projMatrix, viewport,

 &farTemp._x, &farTemp._y, &farTemp._z);

return nearTemp-farTemp; // return the vector

}

Bullet/Cylinder Collision Detection

This algorithm is used when the player fires a bullet and the object being checked is a cylindrical object (like the steam pipe). This algorithm comes courtesy of NeHe (http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30). It is used in the PhysicsIF class.

bool PhysicsIF::checkBulletCylinder(PhysicsObject *envObj, const Vector3d &gunPos, const Vector3d &bulletDir, double &lamda, Vector3d &hitPos, Vector3d &hitNormal){

//first cast the Object pointer to a Pipe pointer

Pipe * pPipe = dynamic_cast< Pipe *>(envObj);

Vector3d RC = gunPos.Subtract(pPipe->position());

Vector3d normal = bulletDir.Cross(pPipe->axis());

double normalLength = normal.Length();

// if parallel

if((normalLength < NEAR_ZERO) && (normalLength > -NEAR_ZERO)) return false;

normal.Normalise(); // normalize the normal vector

double d = fabs(RC.Dot(normal)); // get the distance

if(d <= pPipe->radius()){ // there's been a collision

Vector3d temp = RC.Cross(pPipe->axis());

double t = -temp.Dot(normal)/normalLength;

temp = normal.Cross(pPipe->axis());

temp.Normalise();

double s = fabs(sqrt(pPipe->radius()*pPipe->radius() - d*d) / bulletDir.Dot(temp));

double in = t - s; // where the ray entered

double out = t + s; // where the ray left

//return the smallest positive number

if(in < -NEAR_ZERO){

if(out < -NEAR_ZERO) return false;

else lamda = out;

} else if(out < -NEAR_ZERO) {

lamda = in;

} else {

if(in < out) lamda = in;

else lamda = out;

}

hitPos = gunPos + bulletDir * lamda; // get the hitPosition

Vector3d HB = hitPos - pPipe->position();

//get the hitNormal

hitNormal = HB - pPipe->axis()*(HB.Dot(pPipe->axis()));

hitNormal.Normalise(); // normalize it

return true;

}

return false;

}

Checking Point/Box Intersection

This algorithm is used in the PhysicsIF class to determine if the bullet that intersects an object through one or more of it’s Plane is in or on that objects boundaries.

bool PhysicsIF::checkPointInsideBox(const PhysicsObject *envObj, const Vector3d &point){

//check the point with the bounds of the box

if(point._x >= envObj->getMinusXBound() - NEAR_ZERO && point._x <= envObj->getPlusXBound() + NEAR_ZERO &&

point._y >= envObj->getMinusYBound() - NEAR_ZERO && point._y <= envObj->getPlusYBound() + NEAR_ZERO &&

point._z >= envObj->getMinusZBound() - NEAR_ZERO && point._z <= envObj->getPlusZBound() + NEAR_ZERO)

return true;

else

return false;

}

Early UML Design Evolution
Version 1

[image: image37.png]
Version 2

[image: image38.png]
Level Concept Images

[image: image39.png]
[image: image40.png]
[image: image41.png]
Level Plans

Ground Floor Plan

[image: image42.jpg]

First Floor Plan

[image: image43.jpg]

Second Floor Plan

[image: image44.jpg]

Ground Floor Elevation

[image: image45.jpg]

First Floor Elevation

[image: image46.jpg]

Second Floor Elevation

[image: image47.jpg]

Level Elevation

[image: image48.jpg]
PAGE
76

